Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 33(12): 2333-2337, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36351181

RESUMO

In MALDI TOF MS analysis, complicated mass spectra can usually be recorded for polymers with high affinities to protons and alkali metal ions. For these polymers, protonated ions and sodium and potassium adducts can often be formed concomitantly. By distributing these ions into three separate spectra of protonated ions, sodium adducts, and potassium adducts, significantly simplified spectra can be acquired. Mass spectra consisting of only sodium or potassium adducts can often be obtained by simply adding sodium salt and potassium salt, respectively. We report here a method to selectively generate protonated ions. A polyethylene glycol (PEG) sample with amino end groups was selected as the model polymer and α-cyano-4-hydroxycinnamic acid (CHCA) as the matrix. Octadecylamine (ODA) or a mixture of a tetrabutylammonium (TBA) salt and an ammonium salt was used as the co-matrix to inhibit the release of sodium and potassium ions and their related adducts into the MALDI gas phase plume. By depositing the polymer sample on top of a preloaded layer of CHCA with a co-matrix, the generation of Na+ and K+ adducts is suppressed, while [ODA + H]+ and NH4+ released from the preloaded matrix layer can serve as protonation reagents to protonate the polymer molecules via proton transfer reactions. It is clearly demonstrated that disentangling a complex mass spectrum filled densely with various series of ions into three separate spectra, with each one consisting of only one type of ions, allows unambiguous identification of mass peaks and greatly helps the interpretation of MS results.


Assuntos
Potássio , Sódio , Polietilenoglicóis
2.
Polym Chem ; 12(19): 2891-2903, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-34046093

RESUMO

Industrial and household products, such as paints, inks and cosmetics usually consist of mixtures of macromolecules that are disperse in composition, in size and in monomer sequence. Identifying structure-function relationships for these systems is complicated, as particular macromolecular components cannot be investigated individually. For this study, we have addressed this issue, and have synthesized a series of five sequence-defined polyurethanes (PUs): one neutral-hydrophobic, one single-charged hydrophilic, one single-charged hydrophobic and two double-charged amphiphilic PUs (one symmetric and one asymmetric). These novel precision PUs - that were prepared by using stepwise coupling-deprotection synthetic protocols - have a defined composition, size and monomer sequence, where the chosen sequences were inspired by those that are abundantly formed in the production of industrial waterborne PU dispersions. By performing dynamic light scattering experiments (DLS), self-consistent field (SCF) computations and cryogenic transmission electron microscopy (cryo-TEM), we have elucidated the behavior in aqueous solution of the individual precision PUs, as well as of binary and ternary mixtures of the PU sequences. The double-charged PU sequences ('hosts') were sufficiently amphiphilic to yield single-component micellar solutions, whereas the two more hydrophobic sequences did not micellize on their own, and gave precipitates or ill-defined larger aggregates. Both the neutral-hydrophobic PU and the hydrophilic single-charged PU were successfully incorporated in the host micelles as guests, respectively increasing and reducing the micelle radius upon incorporation. SCF computations indicated that double-charged symmetric PUs stretch whilst double-charged asymmetric PUs are expelled from the core to accommodate hydrophobic PU guests within the micelles. For the ternary mixture of the double-charged symmetric and asymmetric hosts and the neutral-hydrophobic guest we have found an improved colloidal stability, as compared to those for binary mixtures of either host and hydrophobic guest. In another ternary mixture of precision PUs, with all three components not capable of forming micelles on their own, we see that the ensemble of molecules produces stable micellar solutions. Taken together, we find that the interplay between PU-molecules in aqueous dispersions promotes the formation of stable micellar hydrocolloids.

3.
ACS Cent Sci ; 6(8): 1401-1411, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32875081

RESUMO

Supramolecular polymers are known to form strong and resilient hydrogels which can take up large amounts of water while exhibiting ease of processing and self-healing. They also possess similarities with networks of biological macromolecules. The combination of these features makes supramolecular polymers ideal candidates for studying mechanisms and consequences of self-assembly, which are relevant to biological materials. At the same time, this renders investigations of mixed hydrogels based on different supramolecular compounds necessary, since this substantially widens their applicability. Here, we address unusual viscoelastic properties of a class of binary hydrogels made by mixing fibrillar supramolecular polymers that are formed from two compounds: 1,3,5-benzene-tricarboxamide decorated with aliphatic chains terminated by tetra(ethylene glycol) (BTA) and a 20 kg/mol telechelic poly(ethylene glycol) decorated with the same hydrogen bonding BTA motif on both ends (BTA-PEG-BTA). Using a suite of experimental and simulation techniques, we find that the respective single-compound-based supramolecular systems form very different networks which exhibit drastically different rheology. More strikingly, mixing the compounds results in a non-monotonic dependence of modulus and viscosity on composition, suggesting a competition between interactions of the two compounds, which can then be used to fine-tune the mechanical properties. Simulations offer insight into the nature of this competition and their remarkable qualitative agreement with the experimental results is promising for the design of mixed hydrogels with desired and tunable properties. Their combination with a sensitive dynamic probe (here rheology) offer a powerful toolbox to explore the unique properties of binary hydrogel mixtures.

4.
J Med Chem ; 53(4): 1712-25, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20121113

RESUMO

Reducing aldosterone action is beneficial in various major diseases such as heart failure. Currently, this is achieved with mineralocorticoid receptor antagonists, however, aldosterone synthase (CYP11B2) inhibitors may offer a promising alternative. In this study, we used three-dimensional modeling of CYP11B2 to model the binding modes of the natural substrate 18-hydroxycorticosterone and the recently published CYP11B2 inhibitor R-fadrozole as a rational guide to design 44 structurally simple and achiral 1-benzyl-1H-imidazoles. Their syntheses, in vitro inhibitor potencies, and in silico docking are described. Some promising CYP11B2 inhibitors were identified, with our novel lead MOERAS115 (4-((5-phenyl-1H-imidazol-1-yl)methyl)benzonitrile) displaying an IC(50) for CYP11B2 of 1.7 nM, and a CYP11B2 (versus CYP11B1) selectivity of 16.5, comparable to R-fadrozole (IC(50) for CYP11B2 6.0 nM, selectivity 19.8). Molecular docking of the inhibitors in the models enabled us to generate posthoc hypotheses on their binding modes, providing a valuable basis for future studies and further design of CYP11B2 inhibitors.


Assuntos
Compostos de Benzil/síntese química , Citocromo P-450 CYP11B2/antagonistas & inibidores , Imidazóis/síntese química , Modelos Moleculares , 18-Hidroxicorticosterona/química , Animais , Compostos de Benzil/química , Compostos de Benzil/farmacologia , Domínio Catalítico , Linhagem Celular , Cricetinae , Cricetulus , Citocromo P-450 CYP11B2/química , Fadrozol/química , Humanos , Imidazóis/química , Imidazóis/farmacologia , Simulação de Dinâmica Molecular , Ligação Proteica , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...