Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(14): 18112-18123, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547870

RESUMO

Boron doping of diamond-like carbon coatings has multiple effects on their tribological properties. While boron typically reduces wear in cutting applications, some B-doped coatings show poor tribological performance compared with undoped films. This is the case of the tribological tests presented in this work in which an alumina ball is placed in frictional contact with different undoped and B-doped amorphous carbon coatings in humid air. With B-doped coatings, a higher friction coefficient at a steady state with respect to their undoped counterparts was observed. Estimates of the average contact shear stress based on experimental friction coefficients, surface topographies, and Persson's contact theory suggest that the increased friction is compatible with the formation of a sparse network of interfacial ether bonds leading to a mild cold-welding friction regime, as documented in the literature. Tight binding and density functional theory simulations were performed to investigate the chemical effect of B-doping on the interfacial properties of the carbon coatings. The results reveal that OH groups that normally passivate carbon surfaces in humid environments can be activated by boron and form B-O dative bonds across the tribological interfaces, leading to a mild cold-welding friction regime. Simulations performed on different tribological pairs suggest that this mechanism could be valid for B-doped carbon surfaces in contact with a variety of materials. In general, this study highlights the impact that subtle modifications in surface and interface chemistry caused by the presence of impurities can have on macroscopic properties, such as friction and wear.

2.
Sci Adv ; 9(48): eadi2649, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38039366

RESUMO

The Reynolds lubrication equation (RLE) is widely used to design sliding contacts in mechanical machinery. While providing an excellent description of hydrodynamic lubrication, friction in boundary lubrication regions is usually considered by empirical laws, because continuum theories are expected to fail for lubricant film heights h0 ≪ 10 nm, especially in highly loaded tribosystems with normal pressures pn ≫ 0.1 GPa. Here, the performance of RLEs is validated by molecular dynamics simulations of pressurized (with pn = 0.2 to 1 GPa) hexadecane in a gold converging-diverging channel with minimum gap heights h0 = 1.4 to 9.7 nm. For pn ≤ 0.4 GPa and h0 ≥ 5 nm, agreement with the RLE requires accurate constitutive laws for pressure-dependent density and viscosity. An additional nonlinear wall slip law relating wall slip velocities to local shear stresses extends the RLE's validity to even the most severe loading condition pn = 1 GPa and h0 = 1.4 nm. Our results demonstrate an innovative route for continuum modeling of highly loaded tribological contacts under boundary lubrication.

3.
Nanomaterials (Basel) ; 12(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335781

RESUMO

The intercalation of graphene is an effective approach to modify the electronic properties of two-dimensional heterostructures for attractive phenomena and applications. In this work, we characterize the growth and surface properties of ionic KBr layers altered by graphene using ultra-high vacuum atomic force microscopy at room temperature. We observed a strong rippling of the KBr islands on Ir(111), which is induced by a specific layer reconstruction but disappears when graphene is introduced in between. The latter causes a consistent change in both the work function and the frictional forces measured by Kelvin probe force microscopy and frictional force microscopy, respectively. Systematic density functional theory calculations of the different systems show that the change in work function is induced by the formation of a surface dipole moment while the friction force is dominated by adhesion forces.

4.
Beilstein J Nanotechnol ; 12: 432-439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104621

RESUMO

A novel reconstruction of a two-dimensional layer of KBr on an Ir(111) surface is observed by high-resolution noncontact atomic force microscopy and verified by density functional theory (DFT). The observed KBr structure is oriented along the main directions of the Ir(111) surface, but forms a characteristic double-line pattern. Comprehensive calculations by DFT, taking into account the observed periodicities, resulted in a new low-energy reconstruction. However, it is fully relaxed into a common cubic structure when a monolayer of graphene is located between substrate and KBr. By using Kelvin probe force microscopy, the work functions of the reconstructed and the cubic configuration of KBr were measured and indicate, in accordance with the DFT calculations, a difference of nearly 900 meV. The difference is due to the strong interaction and local charge displacement of the K+/Br- ions and the Ir(111) surface, which are reduced by the decoupling effect of graphene, thus yielding different electrical and mechanical properties of the top KBr layer.

5.
Langmuir ; 37(16): 4836-4846, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33847121

RESUMO

Molybdenum dithiocarbamates (MoDTCs) are a class of lubricant additives widely employed in automotives. Most of the studies concerning MoDTC take into account the dimeric structures because of their industrial relevance, with the mononuclear compounds usually neglected, because isolating and characterizing subgroups of MoDTC molecules are generally difficult. However, the byproducts of the synthesis of MoDTC can impact the friction reduction performance at metallic interfaces, and the effect of mononuclear MoDTC (mMoDTC) compounds in the lubrication has not been considered yet in the literature. In this study, we consider for the first time the impurities of MoDTC consisting of mononuclear compounds and combine experimental and computational techniques to elucidate the interaction of these impurities with binuclear MoDTC in commercial formulations. We present a preliminary strategy to separate a commercial MoDTC product in chemically different fractions. These fractions present different tribological behaviors depending on the relative amount of mononuclear and binuclear complexes. The calculations indicate that the dissociation mechanism of mMoDTC is similar to the one observed for the dimeric structures. However, the different chemical properties of mMoDTC impact the kinetics for the formation of the beneficial molybdenum disulfide (MoS2) layers, as shown by the tribological experiments. These results help to understand the functionality of MoDTC lubricant additives, providing new insights into the complex synergy between the different chemical structures.

6.
J Phys Chem A ; 124(39): 8005-8010, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32881495

RESUMO

Among metal ß-diketonates, nickel acetylacetonate (Ni(acac)2) has been widely employed as a precursor for many chemical structures, due to its catalytic properties. Here, we investigate, by means of density functional theory (DFT) calculations, the adsorption and dissociation of this complex: after an evaluation of the structural and electronic properties of Ni(acac)2, a comparison between different dissociation patterns reveals that the most favorable pattern for the complex adsorbed on iron is different from the one suggested by considering the strength of the bonds in the isolated complex and an attempt to generalize this dissociation model is made in this work. Moreover, the most favorable adsorption configurations turned out to be a long bridge positioning of the nickel atom along with an on top positioning of the oxygen atoms of Ni(acac)2, while a short bridge positioning is the most favorable for the central metallic unit alone.

7.
J Phys Chem A ; 123(32): 7007-7015, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31318554

RESUMO

Molybdenum dithiocarbamate (MoDTC) is a well-known lubricant additive, which, in tribological conditions, is capable of forming layers of MoS2 with excellent friction reduction properties. Despite being widely employed in commercial engine oils, a comprehensive theoretical description of the properties of MoDTC is still lacking. In this work, we employ density functional theory to study the structural, electronic, and vibrational properties of MoDTC. We investigate the relative stability of different isomers, different hydrocarbon terminations, and oxidized complexes. Oxidation was found to be energetically favorable for a wide range of conditions, and the most favorable position for oxygen atoms in MoDTC turned out to be the ligand position. These results, along with the calculated reaction energies for different dissociation paths, can be useful to better identify the elementary steps of the decomposition process of MoDTC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...