Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(45): 26312-26321, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33175935

RESUMO

In recent years there has been growing interest in sp-carbon chains as possible novel nanostructures. An example of sp-carbon chains is the so-called polyyne, characterized by the alternation of single and triple bonds that can be synthesized via pulsed laser ablation in liquid (PLAL) of a graphite target. In this work, by using different solvents in the PLAL process, e.g. water, acetonitrile, methanol, ethanol, and isopropanol, we systematically investigated the role of the solvent in polyyne synthesis and stability, and discussed the possible formation mechanisms. The presence of methyl- and cyano-groups in the solutions influences the termination of polyynes, allowing the detection, of hydrogen-capped polyynes up to H-C22-H, methyl-capped polyynes up to H-C18-CH3 and cyanopolyynes up to H-C12-CN. The assignment of each species was performed via UV-vis spectroscopy and supported by density functional theory simulations of vibronic spectra. In addition, surface-enhanced Raman spectroscopy allowed to highlight the differences in the shape and positions of the characteristic Raman bands of the size-selected polyynes with different terminations (hydrogen, methyl and cyano groups). The stability in time of each polyyne was investigated by evaluating the chromatographic peak area, and the effect of size, terminations and solvents on polyyne stability was individuated.

2.
J Phys Chem Lett ; 11(5): 1970-1974, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32067464

RESUMO

Carbyne and linear carbon structures based on sp-hybridization are attractive targets as the ultimate one-dimensional system (i.e., one-atom in diameter) featuring wide tunability of optical and electronic properties. Two possible structures exist for sp-carbon atomic wires: (a) the polyynes with alternated single-triple bonds and (b) the cumulenes with contiguous double bonds. Theoretical studies predict semiconducting behavior for polyynes, while cumulenes are expected to be metallic. Very limited experimental work, however, has been directed toward investigating the electronic properties of these structures, mostly at the single-molecule or monolayer level. However, sp-carbon atomic wires hold great potential for solution-processed thin-film electronics, an avenue not exploited to date. Herein, we report the first field-effect transistor (FET) fabricated employing cumulenic sp-carbon atomic wires as a semiconductor material. Our proof-of-concept FET device is easily fabricated by solution drop casting and paves the way for exploiting sp-carbon atomic wires as active electronic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...