Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Biol Macromol ; 189: 597-606, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34418421

RESUMO

Millions of people are burned worldwide every year and 265,000 of the cases are fatal. The development of burn treatment cannot consist only of the administration of a single drug. Due to the infection risk, antibiotics are used in conjunction with gels and damp bandages. In this work, an inexpensive curative based on silver sulfadiazine (SS) and natural rubber latex (NRL) was developed to treat burn wounds. It was produced by the casting method. The infrared spectrum presented no interaction between drug and biopolymer. At the same time, electronic micrographs showed that the SS crystals are inserted on the polymeric dressing surface. Mechanical properties after the drug incorporation were considered suitable for dermal application. About 32.4% of loaded SS was released in 192 h by the dressings that also inhibited the growth of Candida albicans and Candida parapsilosis at 75.0 and 37.5 µg·mL-1, respectively. The curative proved to be biocompatible when applied to fibroblast cells, in addition to enhancing cellular proliferation and, in the hemocompatibility test, no hemolytic effects were observed. The good results in mechanical, antifungal and biological assays, combined with the average bandage cost of $0.10, represent an exciting alternative for treating burn wounds.


Assuntos
Bandagens , Queimaduras/tratamento farmacológico , Queimaduras/microbiologia , Candida/fisiologia , Borracha/farmacologia , Sulfadiazina de Prata/uso terapêutico , Animais , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Cinética , Camundongos , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Ovinos , Sulfadiazina de Prata/química , Sulfadiazina de Prata/farmacologia , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Appl Biomater Funct Mater ; 19: 22808000211005383, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33781110

RESUMO

The incorporation of drugs and bioactive compounds in the natural rubber latex (NRL) matrix has been an alternative for the development of transdermal release membranes. Ibuprofen (IBF) is known to be used to treat inflammatory diseases, but when administered orally, high concentrations can cause some adverse problems. In this work, the incorporation of IBF in the NRL membranes was evaluated by physical-chemical, in vitro permeation, hemocompatibility and molecular modeling assays. In addition, the in vitro release profile of IBF in acid and basic media was analyzed during 96 h. The IBF-NRL membrane exhibited the absence of intermolecular bonding that could hinder drug release and presented compatible mechanical properties for applications as a cutaneous adhesive (0.58 and 1.12 MPa to Young's modulus and rupture tension, respectively). The IBF-NRL system did not present a significant hemolysis degree (1.67%) within 24 h. The release test indicated that in the first hours of the study, 48.5% IBF was released at basic pH and 22.5% at acidic pH, which is characteristic of a burst effect. Then, a stable release profile was observed until the end of the assay, with total IBF release of 60% in alkaline medium and 50% in acidic medium. The drug permeation results indicated that the IBF-NRL membranes can be used for the local skin treatment with permeation of 3.11% of IBF. Dynamic Molecular simulations indicated a pronounced electric dipole in the ionized form of IBF, which suggests a more effective interaction with water, explaining the efficient drug release in alkaline solutions. In general, the results demonstrate that the IBF-NRL membrane has great potential for a new adhesive that can be used for the treatment of inflammatory processes and injuries.


Assuntos
Ibuprofeno , Borracha , Liberação Controlada de Fármacos
3.
J Biomater Sci Polym Ed ; 32(1): 93-111, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32897812

RESUMO

Skin wound infection requires carefully long-term treatment with an immense financial burden to healthcare systems worldwide. Various strategies such as drug delivery systems using polymer matrix from natural source have been used to enhance wound healing. Natural rubber latex (NRL) from Hevea brasiliensis has shown angiogenic and tissue repair properties. Gentamicin sulfate (GS) is a broad-spectrum antibiotic which inhibits the growth of a wide variety of microorganisms and, because of this, it has also been applied topically for treatment of local infections. The aim of this study was to develop a GS release system using NRL as matrix for Staphylococcus aureus and Escherichia coli infected skin ulcers treatment, without changing drug antibiotic properties. The matrix did not change the GS antimicrobial activity against S. aureus and E. coli strains. Moreover, the NRL-GS biomembrane did not exhibit hemolytic activity, being non-toxic to red blood cells. The eluates of NRL-GS biomembranes and GS solutions did not significantly reduce the survival of Caenorhabditis elegans worms for 24 h at any of the tested concentrations. Thus, these results emphasize that the NRL-GS biomembrane proved to be a promising biomaterial for future studies on the development of dressings for topical uses, inexpensive and practicable, keeping drug antibiotic properties against pathogens and to reduce the side effects.


Assuntos
Úlcera Cutânea , Staphylococcus aureus , Antibacterianos/farmacologia , Biopolímeros , Escherichia coli , Gentamicinas , Humanos
4.
Braz. arch. biol. technol ; 63: e20190478, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1132255

RESUMO

Abstract The pulp oil of Caryocar brasiliense Camb., better known as pequi, is used in the typical cuisine of the Brazilian Cerrado region. It is also used in folk medicine to combat several types of disease of the respiratory system and skin. However, since its exploration is purely extractive, the exhaustion of this plant is already foreseen. Thus, in order to establish the sustainable use of pequi and contribute to its maintenance, this study aimed to develop a phytocosmetic with antioxidant and photoprotective properties using the oil of this fruit. Initially, the cytotoxicity of the oil was evaluated in order to establish the safety of its use and its fatty acid composition. Then, from the cream enriched with the oil, it was evaluated the antioxidant and photoprotector potentials, quantified the total phenolic content and examined the quality of the formulation. Pequi oil showed high percentages of palmitic (52.11%) and oleic (44.57%) fatty acids and absence of cytotoxicity. The analysis of the cream revealed 168.8 mg of total phenols in gallic acid equivalent per 100 g of oil. The evaluation of antioxidant activity showed an EC50 of 2.921 mg/mL and a capacity of inhibiting the lipoperoxidation process higher than 100%. The obtained sun protection factor was 11.40 at the concentration of 6.25 mg/mL. The quality tests revealed small disturbances in the cream stability that can be solved by further research and improvement of the formulation. The pequi oil can be converted into a phytocosmetic of great commercial value.


Assuntos
Humanos , Protetores Solares/análise , Óleos de Plantas/química , Cosméticos/química , Ericales/química , Testes de Toxicidade , Compostos Fitoquímicos
5.
Appl Microbiol Biotechnol ; 103(12): 4767-4778, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31065753

RESUMO

Natural rubber latex (NRL) is a natural polymer which has arisen large interest in the biomedical field, mostly, due to its ability to facilitate angiogenesis and therefore, tissue repair. Moxifloxacin (MXF) is a broad-spectrum antibiotic orally administrated. Considering the biological properties of the NRL and its ability to deliver a wide range of compounds, the present study aimed to develop a novel device for infected chronic wound treatment. MXF-loaded NRL was obtained by a casting method. The results demonstrated that the incorporation of MXF in NRL did not promote any molecular interaction, preserving the integrity of the compounds. The mechanical properties of the biomaterial did not show any significant change, indicating enough elasticity for dermal application. The microbiological assays confirmed the ability of the polymer to deliver the drug without influencing its pharmacological properties. Moreover, it has expressed activity against major bacterial strains presented in wound infections. Finally, the biomaterial shown biocompatibility from the in vitro study. Thus, the present work has shown that MXF-loaded NRL membrane is a promising biomaterial to infected wound treatment.


Assuntos
Bandagens , Sistemas de Liberação de Medicamentos/instrumentação , Moxifloxacina/farmacologia , Polímeros/química , Infecção dos Ferimentos/terapia , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Fibroblastos/microbiologia , Humanos , Queratinócitos/microbiologia , Látex/química , Camundongos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Borracha/química , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...