Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 99(8): 086404, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17930966

RESUMO

We evaluate the Coulomb drag current in two finite-length Tomonaga-Luttinger-liquid wires coupled by an electrostatic backscattering interaction. The drag current in one wire shows oscillations as a function of the bias voltage applied to the other wire, reflecting interferences of the plasmon standing waves in the interacting wires. In agreement with this picture, the amplitude of the current oscillations is reduced with increasing temperature. This is a clear signature of non-Fermi-liquid physics because for coupled Fermi liquids the drag resistance is always expected to increase as the temperature is raised.


Assuntos
Física , Temperatura
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(1 Pt 1): 010101, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15697569

RESUMO

A duality relation between the long-time dynamics of a quantum Brownian particle in a tilted ratchet potential and a driven dissipative tight-binding model is reported. It relates a situation of weak dissipation in one model to strong dissipation in the other one, and vice versa. We apply this duality relation to investigate transport and rectification in ratchet potentials: From the linear mobility we infer ground-state delocalization for weak dissipation. We report reversals induced by adiabatic driving and temperature in the ratchet current and its dependence on the potential shape.

3.
Phys Rev Lett ; 90(5): 056802, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12633384

RESUMO

We have measured a quantum ratchet effect for vortices moving in a quasi-one-dimensional Josephson junction array. In this solid-state device the shape of the vortex potential energy, and consequently the band structure, can be accurately designed. This band structure determines the presence or absence of the quantum ratchet effect. In particular, asymmetric structures possessing only one band below the barrier do not exhibit current rectification at low temperatures and bias currents. The quantum nature of transport is also revealed in a universal/nonuniversal power-law dependence of the measured voltage-current characteristics for samples without/with rectification.

4.
Phys Rev Lett ; 89(14): 146801, 2002 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-12366063

RESUMO

We investigate directed motion in nonadiabatically rocked ratchet systems sustaining few bands below the barrier. Upon restricting the dynamics to the lowest M bands, the total system-plus-bath Hamiltonian is mapped onto a discrete tight-binding model containing all the information both on the intrawell and interwell tunneling motion. A closed form for the current in the incoherent tunneling regime is obtained. In effective single-band ratchets, no current rectification occurs. We apply our theory to describe rectification effects in vortex quantum ratchets devices. Current reversals upon variation of the ac-field amplitude or frequency are predicted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...