Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 475: 134893, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878438

RESUMO

Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) is an important methane (CH4) consumption and nitrogen (N) removal pathway in estuarine and coastal wetlands. Antibiotic contamination is known to affect microbially mediated processes; however, its influences on n-DAMO and the underlying molecular mechanisms remain poorly understood. In the present study, using 13CH4 tracer method combined with molecular techniques, we investigated the responses of n-DAMO microbial abundance, activity, and the associated microbial community composition to sulfamethazine (SMT, a sulfonamide antibiotic, with exposure concentrations of 0.05, 0.5, 5, 20, 50, and 100 µg L-1). Results showed that the effect of SMT exposure on n-DAMO activity was dose-dependent. Exposure to SMT at concentrations of up to 5 µg L-1 inhibited the potential n-DAMO rates (the average rates of nitrite- and nitrate-DAMO decreased by 92.9 % and 79.2 % relative to the control, respectively). In contrast, n-DAMO rates tended to be promoted by SMT when its concentration increased to 20-100 µg L-1 (the average rates of nitrite- and nitrate-DAMO increased by 724.1 % and 630.1 % relative to the low-doses, respectively). Notably, low-doses of SMT suppressed nitrite-DAMO to a greater extent than nitrate-DAMO, indicating that nitrite-DAMO was more sensitive to SMT than nitrate-DAMO. Molecular analyses suggest that the increased n-DAMO activity under high-doses SMT exposure may be driven by changes in microbial communities, especially because of the promotion of methanogens that provide more CH4 to n-DAMO microbes. Moreover, the abundances of n-DAMO microbes at high SMT exposure (20 and 50 µg L-1) were significantly higher than that at low SMT exposure (0.05-5 µg L-1). These results advance our understanding of the ecological effects of SMT on carbon (C) and N interactions in estuarine and coastal wetlands.


Assuntos
Desnitrificação , Metano , Oxirredução , Sulfametazina , Poluentes Químicos da Água , Áreas Alagadas , Metano/metabolismo , Sulfametazina/metabolismo , Anaerobiose , Desnitrificação/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Antibacterianos/farmacologia , Estuários , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Nitritos/metabolismo , Nitratos/metabolismo
2.
Sci Total Environ ; 806(Pt 1): 150425, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560448

RESUMO

Estuarine and coastal wetlands, which act as large sources of methane (CH4) and undergo substantial loading of anthropogenic nitrogen (N), provide ideal conditions for denitrifying anaerobic methane oxidation (DAMO) to occur. Yet the microbial mechanisms governing DAMO and the main driving factors in estuarine and coastal ecosystems remain unclear. This study investigated the spatiotemporal distribution and associated activity of DAMO microorganisms along a wide swath of China's coastline (latitudinal range: 22-41°N) using molecular assays and isotope tracing techniques. We uncovered significant spatial and seasonal variation in DAMO bacterial community structure, whereas DAMO archaeal community structure exhibited no seasonal differences. The abundance of DAMO bacterial pmoA gene (2.2 × 105-1.0 × 107 copies g-1) was almost one order of magnitude higher than that of DAMO archaeal mcrA gene (8.7 × 104 -1.8 × 106 copies g-1). A significant positive correlation between pmoA and mcrA gene abundances (p < 0.01) was observed, indicating that DAMO bacteria and archaea may cooperate closely and thus complete nitrate elimination. Potential DAMO rates, in the range of 0.09-23.4 nmol 13CO2 g-1 day-1 for nitrite-DAMO and 0.03-43.7 nmol 13CO2 g-1 day-1 for nitrate-DAMO, tended to be greater in the relatively warmer low-latitudes. Potential DAMO rates were weakly positively correlated with gene abundances, suggesting that DAMO microbial activity could not be predicted directly by gene abundance alone. The heterogeneous variability of DAMO was shaped by interactions among key environmental characteristics (sediment texture, N availability, TOC, Fe3+, salinity of water, and temperature). On a broader continental scale, potential N removal rates of 0.1-11.2 g N m-2 yr-1 were estimated via nitrite-DAMO activity in China's coastal wetlands. Overall, our results highlight the widespread distribution of DAMO microbes and their potential role in eliminating excess N inputs and reducing CH4 emissions in estuarine and coastal ecosystems, which could help mitigate global warming.


Assuntos
Metano , Áreas Alagadas , Anaerobiose , China , Desnitrificação , Ecossistema , Nitritos , Oxirredução , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...