Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35954582

RESUMO

Dissolved organic matter (DOM) is a central component in the biogeochemical cycles of marine and terrestrial carbon pools, and its structural features greatly impact the function and behavior of ecosystems. In this study, the Wanggang River, which is a seagoing river that passes through Yancheng City, was selected as the research object. Three-dimensional (3D) fluorescence spectral data and UV−visible spectral data were used for component identification and source analysis of DOM based on the PARAFAC model. The results showed that the DOM content of the Wanggang River during the dry season was significantly higher than during the wet season; the DOM content increased gradually from the upper to lower reaches; the proportion of terrigenous components was higher during the wet season than during the dry. UV−Vis spectral data a280 and a355 indicated that the relative concentrations of protein-like components in the DOM of the Wanggang River were higher than those of humic-like components, and the ratio of aromatic substances in the DOM of the Wanggang River water was higher during the wet season. The DOM in the Wanggang River was dominated by protein-like components (>60%), and the protein-like components were dominated by tryptophan proteins (>40%). This study showed that the temporal and spatial distributions of DOM in rivers can be accurately determined using 3D fluorescence spectroscopy combined with the PARAFAC model. This provides useful insight into the biogeochemical process of DOM in rivers of coastal areas.


Assuntos
Matéria Orgânica Dissolvida , Rios , China , Matéria Orgânica Dissolvida/análise , Ecossistema , Reprodutibilidade dos Testes , Rios/química , Análise Espaço-Temporal , Espectrometria de Fluorescência/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-35886723

RESUMO

Shellfish and algae mariculture make up an important part of the marine fishery carbon sink. Carbon sink research is necessary to ensure China achieves its goal of carbon neutrality. This study used the material quality assessment method to estimate the carbon sink capacity of shellfish and algae. Product value, carbon storage value, and oxygen release value were used to calculate the economic value of shellfish and algae carbon sequestration. The results showed that the annual average shellfish and algae carbon sink in China was 1.10 million tons from 2003 to 2019, of which shellfish accounted for 91.63%, wherein Crassostreagigas, Ruditapesphilippinarum, and Chlamysfarreri were the main contributors. The annual average economic value of China's shellfish and algae carbon sequestration was USD 71,303.56 million, and the product value was the main contributor, accounting for 99.11%. The carbon sink conversion ratios of shellfish and algae were 8.37% and 5.20%, respectively, thus making shellfish the aquaculture species with the strongest carbon sink capacity and the greatest carbon sink potential. The estimated growth rate in the shellfish and algae removable carbon sink was 33,900 tons/year in China, but this trend was uncertain. The capacity for carbon sequestration and exchange by aquaculture can be improved by expanding breeding space, promoting multi-level comprehensive breeding modes, and marine artificial upwelling projects.


Assuntos
Sequestro de Carbono , Carbono , Carbono/análise , Dióxido de Carbono/análise , China , Frutos do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...