Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(14): 16920-16927, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35352929

RESUMO

Interfacial passivation engineering plays a crucial role in the explosive development of perovskite solar cells (PSCs). However, previous studies on passivation layers mainly focused on the defect-passivation mechanism rather than the interfacial charge transport efficiency. Here, by precisely tuning the interplanar spacing of the ammonium iodide passivation layer, we elucidate the promoting effect of the reduced interplanar spacing of the passivation layer on the photogenerated hole tunneling efficiency at the interface of the hole transport layer and perovskite. Compared with the commonly used phenethylammonium iodide passivation layer with a wider interplanar spacing, 2-chlorobenzylammonium iodide with a narrower interplanar spacing can help break through the thickness limitation of the passivation layer, thus showing a better comprehensive passivation effect. Therefore, we demonstrate photovoltaic devices with an enhanced fill factor (FF) and open-circuit voltage (VOC), which yield a high power conversion efficiency (PCE) of up to 23.1%. We thus identify an efficient scheme to achieve optimal passivation conditions for high-performance PSCs.

2.
ACS Appl Mater Interfaces ; 13(47): 56265-56272, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792324

RESUMO

In perovskite solar cells (PSCs), the hole-transport layer (HTL) plays an essential role in effective charge transport and extraction from the photoexcited perovskite, thus being significant for overall power conversion efficiency (PCE) and operational stability. So far, spiro-MeOTAD has been the most widely used HTL despite its inherent drawbacks, such as highly hygroscopic nature, poor conductivity, and mismatched energy-level alignment with the perovskite active layer. Here, a spiro-MeOTAD-based composite HTL modified by microwave method-synthesized carbon quantum dots (CQDs) was proposed and demonstrated as a promising HTL candidate for high-performance PSCs. The results demonstrated that the CQDs/spiro-MeOTAD composite HTL possesses several appealing characteristics for PSC applications, such as suitable energy levels for hole extraction, passivated interfacial trap states, and reduced recombination losses. Consequently, as compared to the control one using an unmodified spiro-MeOTAD HTL, (FAPbI3)0.95(MAPbBr3)0.05-based planar PSCs with composite HTL exhibit notably enhanced PCE and operational stability. Remarkably, an encouraging PCE of 20.41% was achieved for the champion device, and much improved operational stability was also demonstrated under continuous AM1.5 illumination with maximum power point (MPP) tracking conditions.

3.
Nanoscale Adv ; 1(4): 1372-1379, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132611

RESUMO

N-Doped oxygen defective N/TiO2-x mesocrystal nanocubes were successfully prepared by a facile strategy in our system. Crystal topotactic transformation from NH4TiOF3 mesocrystals facilitated the formation of a porous structure of TiO2. Meanwhile, the introduction of N dopants and oxygen vacancies (OVs) was also achieved during this process. The as-prepared products exhibit much higher photoelectrochemical (PEC) and photocatalytic degradation performance under visible light illumination. It is suggested that the promising catalytic properties result from the synergistic effect of doping, OVs and the amazing porous mesocrystal structure of N/TiO2-x .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...