Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 146: 109405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278337

RESUMO

Plant polysaccharides as immunomodulators are considered one of the effective measures to reduce antibiotic therapy in aquaculture. The immunomodulatory function of Salvia miltiorrhiza polysaccharides (SMP) has been demonstrated and begun to be applied in vertebrates, but its potential effect on crustaceans is unclear. In this study, crayfish (Procambarus clarkii) was fed with 0 %, 0.3 %, 0.7 %, 1.1 %, and 1.5 % SMP for 4 weeks to investigate the effects of SMP on hemocytes phagocytosis, hepatopancreatic function, and intestinal barrier function. The results revealed that hemocyte phagocytic activity was increased in all SMP groups. During the process of hemocytes phagocytic recognition and formation of phagosomes and phagolysosomes, the mRNA expression levels of mas, hem, rab3, ctsb, and lamp-1 were up-regulated mainly in the 0.3 % SMP group. During the clearance phase of phagocytosis, respiratory burst activity, ROS level, T-SOD, CAT, GST, and LZM activities were mainly increased in the 1.5 % SMP group. Hepatopancreas AKP and GOT activity were no significant change in all SMP groups. ACP activity was significantly enhanced in the 1.1 % SMP group. The GPT activity of 0.3-0.7 % SMP group was significantly decreased. The 0.7 % SMP group had the highest intestinal fold height. The highest index values of OTUs, Ace, Chao, and Shannon were in the 0.3 % SMP group. The dietary addition of 0.3 % SMP led to a tendency of increased relative abundance of Firmicutes and Bacteroidota at the phylum level, while the relative abundance of Proteobacteria at the phylum level decreased. In conclusion, dietary SMP could promote crayfish health by enhancing phagocytosis, protecting hepatopancreas and enhancing intestinal barrier function. This study contributes to the theoretical foundation for exploring the potential application of plant polysaccharides in crustaceans.


Assuntos
Astacoidea , Salvia miltiorrhiza , Animais , Astacoidea/genética , Hemócitos , Hepatopâncreas , Função da Barreira Intestinal , Fagocitose , Polissacarídeos/farmacologia
2.
Fish Shellfish Immunol ; 131: 697-706, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36341872

RESUMO

Natural plant polysaccharide as immune modulator is considered an effective strategy for healthy aquaculture to reduce medicine treatment. Salvia miltiorrhiza polysaccharides (SMP) had applications to regulate immune activity and enhance antioxidant in vertebrates, but the potential function has been rarely reported in crustaceans. In this study, the immunological effects of SMP on hemocytes of Procambarus clarkii were analyzed. Results showed that total superoxide dismutase (T-SOD), phenoloxidase (PO) activity and respiratory burst were up-regulated after SMP treatment. After high-throughput sequencing, 2170 differentially expressed genes (DEGs) including 1294 up-regulated and 876 down-regulated genes were identified. KEGG function enrichment analysis indicated that DEGs are involved in crustaceans cellular immune-related signaling pathways, including lysosome, phagosome and endocytosis. Transcriptome mining and qRT-PCR showed that SMP up-regulated humoral immunity factors gene expression. Diets supplemented with 0.8% SMP significantly up-regulated the total number of hemocytes (THC), T-SOD and PO activity, improved the survival of crayfish after Citrobacter freundii infection. This study suggested that SMP could improve the cellular and humoral immunity of P. clarkii. Furthermore, this finding supplied a molecular foundation for further comprehending the immunopotentiator effects of plant polysaccharides in crustaceans.


Assuntos
Astacoidea , Salvia miltiorrhiza , Animais , Hemócitos/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Imunidade Inata/genética , Superóxido Dismutase/genética
3.
Fish Shellfish Immunol ; 127: 594-603, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35803508

RESUMO

The use of plant polysaccharides in aquaculture is recognized as a healthy strategy to enhance disease resistance and reduce medication use. Salvia miltiorrhiza polysaccharide (SMP) can regulate the immune function of higher vertebrates. However, the effects of SMP on fish have not been fully investigated. In this study, the ability of SMP to activate the macrophages of Siberian sturgeon (Acipenser bareii) was analyzed in vitro. The effects of SMP on immune cell activity of hybrid sturgeon (A. baerii ♀ × Acipenser schrenckii ♂) and resistance to Aeromonas hydrophila were further detected in vivo. The in vitro results showed that SMP up-regulated phagocytosis, respiratory burst, inducible nitric oxide synthase activity, nitric oxide (NO) concentration, and cytokine mRNA expression of macrophages. The in vivo results showed that dietary supplementation with SMP enhanced the respiratory burst of macrophages and proliferative activity of lymphocytes. Dietary supplementation with SMP increased serum concentrations of lysozyme and NO, and improved the survival rate of hybrid sturgeon challenged with A. hydrophila. Collectively, these results suggest that SMP can improve the immune function and disease resistance of sturgeon. This study provides a theoretical basis for the application of SMP for healthy farming of sturgeon.


Assuntos
Aeromonas hydrophila , Salvia miltiorrhiza , Aeromonas hydrophila/fisiologia , Animais , Carboidratos da Dieta , Resistência à Doença , Peixes , Macrófagos , Polissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...