Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(20): 5390-5396, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38739421

RESUMO

The enhanced local field of gold nanoparticles (AuNPs) in mid-infrared spectral regions is essential for improving the detection sensitivity of vibrational spectroscopy and mediating photochemical reactions. However, it is still challenging to measure its intensity at subnanometer scales. Here, using the NO2 symmetric stretching mode (νNO2) of self-assembled 4-nitrothiophenol (4-NTP) monolayers on AuNPs as a model, we demonstrated that the percentage of excited νNO2 mode, determined by femtosecond time-resolved sum-frequency generation vibrational spectroscopy, allows us to directly detect the local field intensity of the AuNP surface in subnanometer ranges. The local-field intensity is tuned by AuNP diameters. An approximate 17-fold enhancement was observed for the local field on 80 nm AuNPs compared to the Au film. Additionally, the local field can regulate the anharmonicity of the νNO2 mode by synergistic effect with molecular orientation. This work offers a promising approach to probe the local field intensity distribution around plasmonic NP surfaces at subnanometer scales.

2.
Chempluschem ; 89(6): e202300684, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38380553

RESUMO

Protein misfolding and amyloid formation are implicated in the protein dysfunction, but the underlying mechanism remains to be clarified due to the lack of effective tools for detecting the transient intermediates. Sum frequency generation vibrational spectroscopy (SFG-VS) has emerged as a powerful tool for identifying the structure and dynamics of proteins at the interfaces. In this review, we summarize recent SFG-VS studies on the structure and dynamics of membrane-bound proteins during misfolding processes. This paper first introduces the methods for determining the secondary structure of interfacial proteins: combining chiral and achiral spectra of amide A and amide I bands and combining amide I, amide II, and amide III spectral features. To demonstrate the ability of SFG-VS in investigating the interfacial protein misfolding and amyloid formation, studies on the interactions between different peptides/proteins (islet amyloid polypeptide, amyloid ß, prion protein, fused in sarcoma protein, hen egg-white lysozyme, fusing fusion peptide, class I hydrophobin SC3 and class II hydrophobin HFBI) and surfaces such as lipid membranes are discussed. These molecular-level studies revealed that SFG-VS can provide a unique understanding of the mechanism of interfacial protein misfolding and amyloid formation in real time, in situ and without any exogenous labeling.


Assuntos
Dobramento de Proteína , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Análise Espectral/métodos , Amiloide/química , Amiloide/metabolismo , Humanos , Vibração , Animais , Estrutura Secundária de Proteína
3.
ACS Appl Mater Interfaces ; 16(1): 1326-1332, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38143329

RESUMO

Although the importance of electron-phonon interactions on the optoelectronic properties of perovskites has been well documented, the structural origin of electron-phonon interactions remains largely unexplored. In this study, using pseudohalide perovskites Cs2Pb(SCN)2I2(1-x)Br2x as a model, we have revealed how the orientation of SCN- anions tunes the electron-phonon interactions and the effective charge-carrier mobility by utilizing femtosecond sum frequency generation vibrational spectroscopy, supplemented by photoluminescence spectroscopy and femtosecond optical-pump terahertz-probe spectroscopy. The coupling between neighboring SCN- anions decreases as the Br content (x) increases but does not have a significant effect on the electron-phonon interactions. In contrast, the orientation angle of SCN- anions has a strong correlation with the electron-phonon interaction and effective charge-carrier mobility, that is, a more parallel orientation of SCN- anions leads to a higher electron-phonon interaction and lower effective charge-carrier mobility. This finding provides a molecule-level understanding of the inorganic lattice structure in tuning electron-phonon interactions and may offer valuable guidance for optimizing the optoelectronic properties of perovskites.

4.
Langmuir ; 39(5): 2015-2021, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36695809

RESUMO

Silicon is reported to be a promising anode material due to its high storage capacity and excellent energy conversion rate. Molecular-level insight into the interaction between silicon electrodes and electrolyte solutions is essential for understanding the formation of a stable solid electrolyte interphase (SEI), but it is yet to be explored. In this study, we apply femtosecond sum frequency generation vibrational spectroscopy to investigate the initial adsorption of various pure and mixed electrolyte molecules on the silicon anode surface by monitoring the SFG signals from the carbonyl group of electrolyte molecules. When the silicon comes in contact with a pure carbonate solution, the linear carbonates of diethyl carbonate and ethyl methyl carbonate adopt two conformations with opposite C═O orientations on the silicon interface while the cyclic carbonates of ethylene carbonate and propylene carbonate almost adopt one conformation with C═O bonds pointing toward the silicon electrode. When the silicon comes in contact with the mixed linear and cyclic carbonate solutions, the total SFG intensity from the mixed solutions is approximately 2∼5 times weaker than those of pure cyclic carbonates. The C═O bonds of cyclic carbonates point toward the silicon electrode, while the C═O bonds of linear carbonates face toward the bulk solution at the silicon/mixed solution interface. No preferential absorption behaviors of the linear and cyclic carbonate electrolytes on the silicon electrode are observed. Such findings may help to understand the mechanism by which the SEI formed on the silicon anode is unstable.

5.
Langmuir ; 38(19): 6099-6105, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35499917

RESUMO

Surface plasmon-enhanced vibrational spectroscopy has been demonstrated to be an important highly sensitive diagnostic technique, but its enhanced mechanism is yet to be explored. In this study, we couple femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) with surface plasmon generated by the excitation of localized gold nanorods/nanoparticles and investigate the plasmonically enhanced factors (EFs) of SFG signals from poly(methyl methacrylate) films. Through monitoring the SFG intensity of carbonyl and ester methyl groups, we have established a correlation between EFs and the coupling of localized surface plasmon resonance with SFG and visible beams. It is found that the total enhanced factor is approximately proportional to the square of an enhanced factor of the SFG electromagnetic field and the fourth power of the enhanced factor of the visible electromagnetic field. The local field effect is roughly expressed to be the square of an enhanced factor of the visible electromagnetic field. This finding will help to guide the experimental design of plasmon-enhanced SFG to drastically improve the detection sensitivity and thus provide greater insight into the ultrafast dynamics near plasmonic surfaces.

6.
ACS Sens ; 5(6): 1548-1554, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466645

RESUMO

Wearable sweat sensors have spearheaded the thrust toward personalized health monitoring with continuous, real-time, and molecular-level insight in a noninvasive manner. However, effective sweat sampling still remains a huge challenge. Here, we introduce an intelligent Janus textile band that bridges the gap between self-pumping sweat collection, comfortable epidemic microclimate, and sensitive electrochemical biosensing via an integrated wearable platform. The dominant sweat sampling configuration is a textile with Janus wettability, which is fabricated by electrospinning a hydrophobic polyurethane (PU) nanofiber array onto superhydrophilic gauze. Based on a contact-pumping model, the Janus textile can unidirectionally and thoroughly transport sweat from skin (hydrophobic side) to embedded electrode surface (hydrophilic side) with epidemic comfort. On-body experimentation reveals that the sensitive detection of multiple biomarkers including glucose, lactate, K+, and Na+ is achieved in the pumped sweat. Such smart Janus textile bands can effectively drain epidermal sweat to targeted assay sites via interface modifications, representing a reinforced and controlled biofluids analysis pathway with physiological comfort.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Glucose , Suor , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...