Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 8: 801407, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35187141

RESUMO

Canine mammary tumor is a serious disease threatening the health of dogs and can be used as a research model for human breast cancer. The study of canine mammary tumor has a role in improving the welfare of dogs. Most common canine mammary tumor chemotherapy drugs have limited effects and drug resistance. Celastrol is an extract of Tripterygium wilfordii, which has a wide range of biological activities, including significant anti-tumor effects. At present, celastrol has not been used in the clinical treatment for canine mammary tumor. This study investigated the anti-tumor properties of celastrol through in vitro assay of cell proliferation inhibition, cell colony, cell migration, and invasion; flow cytometry, qPCR, and Western Blot methods were used to explore the anti-tumor mechanism of celastrol. The results showed that celastrol can inhibit the proliferation of canine mammary tumor cells in vitro, and decrease the migration and invasion ability of canine mammary tumor cells. We also found that celastrol can upregulate Cleaved Caspase-3 and Cleaved Caspase-9 protein expression levels to promote cell apoptosis, and can regulate cell cycle-related proteins to induce cell cycle arrest. In summary, celastrol may inhibit canine mammary tumor cells through the Caspase pathway, providing a new direction for anti-canine mammary tumor drugs, and is expected to become a new anti-cancer drug for canine mammary tumors.

2.
Cell Prolif ; 52(5): e12633, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31264317

RESUMO

OBJECTIVES: Matrix metalloproteinase 9 (MMP-9) has been frequently noticed in the breast cancers. In this study, we aim to investigate the associations of MMP-9 with the activation of transforming growth factor beta (TGF-ß)/SMAD signalling and the malignancy of breast malignant tumour cells. MATERIALS AND METHODS: The distributions of MMP-9 and TGF-ß in the tissues of canine breast cancers were screened by immunohistochemical assays. A recombinant plasmid expressing mouse MMP-9 was generated and transiently transfected into three different breast cancer cell lines. Cell Counting Kit-8 and colony formation assay were used to study cell viability. Migration and invasion ability were analysed by wound assay and transwell filters. Western blot and quantitative real-time PCR were used to determine the protein and mRNA expression. RESULT: Remarkable strong MMP-9 and TGF-ß signals were observed in the malignant tissues of canine breast cancers. In the cultured three cell lines receiving recombinant plasmid expressing mouse MMP-9, the cell malignancy was markedly increased, including the cell colony formation, migration and epithelial-mesenchymal transition. The levels of activated TGF-ß, as well as SMAD4, SMAD2/3 and phosphorylation of SMAD2, were increased, reflecting an activation of TGF-ß/SMAD signalling. We also demonstrated that the inhibitors specific for MMP-9 and TGF-ß sufficiently blocked the overexpressing MMP-9 induced the activation of SMAD signalling and enhancement on invasion in the tested breast cancer cell lines. CONCLUSION: Overexpression of MMP-9 increases the malignancy of breast cancer cell lines, largely via activation of the TGF-ß/SMAD signalling.


Assuntos
Metaloproteinase 9 da Matriz/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/genética , Fosforilação , Transdução de Sinais , Fator de Crescimento Transformador beta/antagonistas & inibidores
3.
Tissue Cell ; 54: 10-19, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30309498

RESUMO

Canine mammary tumor (CMT) has always been an ideal animal model for human breast cancer (HBC) research, however, there is a lack of various established CMT cell lines corresponding to HBC cell lines. This study was designed to establish a new type of CMT cell line. The primary tumor, CMT-7364, was identified as the intraductal papillary carcinoma, and showed negative immunoreactivity to estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor-2 (HER-2) by immunohistochemistry (IHC) analysis. The CMT-7364 cell line from this primary tumor also shows a negative immunoreactivity to ER, PR, and HER-2, and was negative to epithelial cell markers and positive to mesenchymal cell markers by immunocytochemistry (ICC) analysis. This cell line, which has been stably cultured for more than 115 passages, and was characterized by epithelial origin with the expression of the epithelial antigen by ICC analysis and invasion ability by transwell analysis. In vivo, tumor mass and metastases in the lung were found after inoculating the CMT-7364 cells in the nude mice model, and the immune-complete mice model respectively. The tissues from the xenograft tumor were also negative to ER, PR, and HER-2 by IHC analysis. Thus, a novel triple negative canine mammary cancer cell line, CMT-7364, was successfully established, which could be used as a promising model for the research of immunotherapy and Epithelial-Mesenchymal Transition (EMT) mechanism of the triple-negative breast cancer both in canine and human.


Assuntos
Linhagem Celular Tumoral/patologia , Modelos Animais de Doenças , Cães , Neoplasias Mamárias Animais/patologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Feminino , Xenoenxertos , Camundongos
4.
PLoS One ; 12(12): e0188960, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29206859

RESUMO

A variety of bacteria have been used as agents and vectors for antineoplastic therapy. A series of mechanisms, including native bacterial toxicity, sensitization of the immune system and competition for nutrients, may contribute to antitumor effects. However, the antitumor effects of Proteus species have been minimally studied, and it is not clear if bacteria can alter tumor hypoxia as a component of their antineoplastic effect. In the present study, Proteus mirabilis bacteria were evaluated for the ability to proliferate and accumulate in murine tumors after intravenous injection. To further investigate the efficacy and safety of bacterial injection, mice bearing 4T1 tumors were treated with an intravenous dose of 5×107 CFU Proteus mirabilis bacteria via the tail vein weekly for three treatments. Histopathology, immunohistochemistry (IHC) and western analysis were then performed on excised tumors. The results suggested Proteus mirabilis localized preferentially to tumor tissues and remarkably suppressed the growth of primary breast cancer and pulmonary metastasis in murine 4T1 models. Results showed that the expression of NKp46 and CD11c was significantly increased after bacteria treatment. Furthermore, tumor expression of carbonic anhydrase IX (CA IX) and hypoxia inducible factor-1a (HIF-1a), surrogates for hypoxia, was significantly lower in the treated group than the control group mice as assessed by IHC and western analysis. These findings demonstrated that Proteus mirabilis may a promising bacterial strain for used against primary tumor growth and pulmonary metastasis, and the immune system and reduction of tumor hypoxia may contribute to the antineoplastic and antimetastatic effects observed.


Assuntos
Neoplasias da Mama/terapia , Proliferação de Células , Modelos Animais de Doenças , Neoplasias Pulmonares/secundário , Proteus mirabilis/fisiologia , Animais , Neoplasias da Mama/patologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C
5.
BMC Cancer ; 17(1): 255, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28399915

RESUMO

BACKGROUND: Metastasis is the leading cause of death in breast cancer patients. CD73, also known as ecto-5'-nucleotidase, plays a critical role in cancer development including metastasis. The existing researches indicate that overexpression of CD73 promotes growth and metastasis of breast cancer. Therefore, CD73 inhibitor can offer a promising treatment for breast cancer. Here, we determined whether tiamulin, which was found to inhibit CD73, was able to suppress breast cancer development and explored the related mechanisms. METHODS: We firstly measured the effect of tiamulin hydrogen fumarate (THF) on CD73 using high performance liquid chromatography (HPLC). Then, we investigated cell proliferation, migration and invasion in MDA-MB-231 human breast cancer cell line and 4 T1 mouse breast cancer cell line treated with THF by migration assay, invasion assay and activity assay. Besides, we examined the effect of THF on syngeneic mammary tumors of mice by immunohistochemistry. RESULTS: Our data demonstrated that THF inhibited CD73 by decreasing the activity instead of the expression of CD73. In vitro, THF inhibited the proliferation, migration and invasion of MDA-MB-231 and 4 T1 cells by suppressing CD73 activity. In vivo, animal experiments showed that THF treatment resulted in significant reduction in syngeneic tumor growth, microvascular density and lung metastasis rate. CONCLUSIONS: Our results indicate that THF inhibits growth and metastasis of breast cancer by blocking the activity of CD73, which may offer a promising treatment for breast cancer therapy.


Assuntos
5'-Nucleotidase/metabolismo , Antibacterianos/farmacologia , Neoplasias da Mama/prevenção & controle , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/prevenção & controle , 5'-Nucleotidase/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diterpenos/farmacologia , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Vet Sci ; 18(3): 359-367, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27586466

RESUMO

The Wnt signaling pathway and its key component ß-catenin have critical roles in the development of diseases such as tumors in mammals. However, little has been reported about involvement of the Wnt/ß-catenin signaling pathway in canine mammary tumors (CMTs). The present study detected expression of 30 Wnt signaling pathway-related genes in CMTs; the results are potentially useful for molecular-based diagnosis of CMTs and the development of new targeted therapies. Significant upregulations of dickkopf-1 protein, secreted frizzled-related sequence protein 1 (SFRP1), frizzled 3, ß-catenin, and lymphoid enhancer-binding factor 1 (LEF1) were detected in highly malignant CMTs compared to levels in normal mammary gland tissues; moreover, highly significant upregulation of WNT5A was observed in low malignancy CMTs. Downregulation was only detected for SFRP4 in malignant CMT samples. The subcellular location of ß-catenin and cyclin D1 in 100 CMT samples was investigated via immunohistochemical analysis, and significantly increased expressions of ß-catenin in cytoplasm and cyclin D1 in nuclei were revealed. Western blotting analysis revealed that the expression of ß-catenin and LEF1 increased in in the majority of CMT samples. Taken together, the results provide important evidence of the activation status of the Wnt pathway in CMTs and valuable clues to identifying biomarkers for molecular-based diagnosis of CMT.


Assuntos
Doenças do Cão/metabolismo , Neoplasias Mamárias Animais/metabolismo , Via de Sinalização Wnt , Animais , Western Blotting/veterinária , Ciclina D1/metabolismo , Doenças do Cão/patologia , Cães , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Animais/patologia , Reação em Cadeia da Polimerase/veterinária , Estudos Retrospectivos , Proteína Wnt-5a/metabolismo , beta Catenina/metabolismo
7.
BMC Cancer ; 15: 965, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26674531

RESUMO

BACKGROUND: Metastasis is the major cause of death in breast cancers. MMPs play a key role in tumor microenvironment that facilitates metastasis. The existing researches suggest that the high expression of gelatinase A and B (MMP2 and MMP9) promote the metastasis of breast cancer. Therefore, gelatinase inhibitor can effectively suppress tumor metastasis. However, at present, there is no dramatically effective gelatinase inhibitor against breast cancer. METHODS: We screened gelatinase inhibitor among Chinese herbal medicine by molecular docking technology; investigated the proliferation, migration and invasion of MDA-MB-231 human breast cancer cell line and 4T1 mouse breast cancer cell line in response to the treatment with the screened inhibitor by wound assay, invasion assay and gelatin zymography; then further examined the effects of inhibitor on allograft mammary tumors of mice by immunohistochemistry. RESULTS: We successfully screened an Chinese herbal medicine-Plantamajoside(PMS)-which can reduce the gelatinase activity of MMP9 and MMP2. In vitro, PMS can inhibit the proliferation, migration and invasion of MDA-MB-231 human breast cancer cell line and 4T1 mouse breast cancer cell line by decreasing MMP9 and MMP2 activity. In vivo, oral administration of PMS to the mice bearing 4T1 cells induced tumors resulted in significant reduction in allograft tumor volume and weights, significant decrease in microvascular density and significant lower lung metastasis rate. CONCLUSIONS: Our results indicate that as a promising anti-cancer agent, PMS may inhibit growth and metastasis of breast cancer by inhibiting the activity of MMP9 and MMP2.


Assuntos
Neoplasias da Mama/patologia , Catecóis/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Glucosídeos/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Animais , Antineoplásicos/farmacologia , Western Blotting , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica/patologia , Fitoterapia/métodos
8.
J Vet Med Sci ; 77(11): 1465-71, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26156079

RESUMO

CHIP (Carboxy terminus of Hsc70 Interacting Protein) is an E3 ubiquitin ligase that can induce ubiquitination and degradation of several oncogenic proteins. The expression of CHIP is frequently lower in human breast cancer than in normal breast tissue. However, the expression and role of CHIP in the canine mammary gland tumor (CMGT) remain unclear. We investigated the potential correlation between CHIP expression and mammary gland tumor prognosis in female dogs. CHIP expression was measured in 54 dogs by immunohistochemistry and real-time RT-PCR. CHIP protein expression was significantly correlated with the histopathological diagnosis, outcome of disease and tumor classification. The transcriptional level of CHIP was significantly higher in normal tissues (P=0.001) and benign tumors (P=0.009) than it in malignant tumors. CHIP protein expression was significantly correlated with the transcriptional level of CHIP (P=0.0102). The log-rank test survival curves indicated that patients with low expression of CHIP had shorter overall periods of survival than those with higher CHIP protein expression (P=0.050). Our data suggest that CHIP may play an important role in the formation and development of CMGTs and serve as a valuable prognostic marker and potential target for genetic therapy.


Assuntos
Doenças do Cão/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Mamárias Animais/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Doenças do Cão/genética , Cães , Feminino , Ubiquitina-Proteína Ligases/genética
9.
Oncotarget ; 6(16): 14385-98, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25965911

RESUMO

Colon cancer is the third most common cancer in humans which has a high mortality rate, and 5-Fluorouracil (5-FU) is one of the most widely used drugs in colon cancer therapy. However, acquired chemoresistance is becoming the major challenges for patients, and the molecular mechanism underlying the development of 5-FU resistance is still poorly understood. In this study, a newly designed therapy in combination with 5-FU and NVP-BEZ235 in colon cancer cells (HCT-116 and RKO) was established, to investigate the mechanism of 5-FU resistance and optimize drug therapy to improve outcome for patients. Our results show 5-FU induced cell apoptosis through p53/PUMA pathway, with aberrant Akt activation, which may well explain the mechanism of 5-FU resistance. NVP-BEZ235 effectively up-regulated PUMA expression, mainly through inactivation of PI3K/Akt and activation of FOXO3a, leading to cell apoptosis even in the p53-/- HCT-116 cells. Combination treatment of 5-FU and NVP-BEZ235 further increased cell apoptosis in a PUMA/Bax dependent manner. Moreover, significantly enhanced anti-tumor effects were observed in combination treatment in vivo. Together, these results demonstrated that the combination treatment of 5-FU and NVP-BEZ235 caused PUMA-dependent tumor suppression both in vitro and in vivo, which may promise a more effective strategy for colon cancer therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias do Colo/tratamento farmacológico , Fluoruracila/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose , Linhagem Celular Tumoral , Fluoruracila/farmacologia , Humanos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...