Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38252574

RESUMO

Many rehabilitation exoskeletons have been used in the field of stroke rehabilitation. Generating human-like motion is necessary for exoskeletons to help patients perform activities of daily living (ADL) while maintaining interaction quality and ergonomics. However, most of the current motion generation algorithms utilize inverse kinematics (IK) to solve the final configuration before generation, and do not consider the movement of shoulder girdle. Separately considering the shoulder girdle motion and arm motion, this paper proposes an algorithm integrated IK to generate human-like motion. The arm moves towards the target with a bell-shaped velocity in the absence of the final configuration, and the shoulder girdle maintain natural passive motion. Moreover, the generated motion can be mapped to the configuration space of exoskeletons. Compared with the experimental data collected using a motion capture system, the values of RMSE and HPDI of the generated wrist trajectory in the task space are within 0.2 and 0.17, respectively, while those of RMSE in the joint space are within 15 deg, which demonstrates the human-like nature of the generated motion.


Assuntos
Exoesqueleto Energizado , Ombro , Humanos , Braço , Atividades Cotidianas , Extremidade Superior , Algoritmos , Movimento , Fenômenos Biomecânicos , Articulação do Punho
2.
Sci Rep ; 13(1): 16101, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752182

RESUMO

Modeling and motion extraction of human upper limbs are essential for interpreting the natural behavior of upper limb. Owing to the high degrees of freedom (DOF) and highly dynamic nature, existing upper limb modeling methods have limited applications. This study proposes a generic modeling and motion extraction method, named Primitive-Based triangular body segment method (P-BTBS), which follows the physiology of upper limbs, allows high accuracy of motion angles, and describes upper-limb motions with high accuracy. For utilizing the upper-limb modular motion model, the motion angles and bones can be selected as per the research topics (The generic nature of the study targets). Additionally, P-BTBS is suitable in most scenarios for estimating spatial coordinates (The generic nature of equipment and technology). Experiments in continuous motions with seven DOFs and upper-limb motion description validated the excellent performance and robustness of P-BTBS in extracting motion information and describing upper-limb motions, respectively. P-BTBS provides a new perspective and mathematical tool for human understanding and exploration of upper-limb motions, which theoretically supports upper-limb research.


Assuntos
Medicamentos Genéricos , Tecnologia , Humanos , Movimento (Física) , Extremidade Superior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...