Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 152: 106343, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481758

RESUMO

Convolutional neural networks (CNNs) show excellent performance in accurate medical image segmentation. However, the characteristics of sample with small size and insufficient feature expression, irregular shape of the segmented target and inaccurate judgment of edge texture have always been problems to be faced in the field of skin lesion image segmentation. Therefore, in order to solve these problems, discrete Fourier transform (DFT) is introduced to enrich the input data and a CNN architecture (HWA-SegNet) is proposed in this paper. Firstly, DFT is improved to analyze the features of the skin lesions image, and multi-channel data is extended for each image. Secondly, a hierarchical dilated analysis module is constructed to understand the semantic features under multi-channel. Finally, the pre-prediction results are fine-tuned using a weight adjustment structure with fully connected layers to obtain higher accuracy prediction results. Then, 520 skin lesion images are tested on the ISIC 2018 dataset. Extensive experimental results show that our HWA-SegNet improve the average segmentation Dice Similarity Coefficient from 88.30% to 91.88%, Sensitivity from 89.29% to 92.99%, and Jaccard similarity index from 81.15% to 85.90% compared with U-Net. Compared with the State-of-the-Art method, the Jaccard similarity index and Specificity are close, but the Dice Similarity Coefficient is higher. The experimental data show that the data augmentation strategy based on improved DFT and HWA-SegNet are effective for skin lesion image segmentation.


Assuntos
Processamento de Imagem Assistida por Computador , Dermatopatias , Humanos , Processamento de Imagem Assistida por Computador/métodos , Dermatopatias/diagnóstico por imagem , Redes Neurais de Computação
2.
Comput Intell Neurosci ; 2022: 7539857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898768

RESUMO

The classification method of steel surface defects based on deep learning provides a basis for quality control of industrial steel manufacturing. Due to a large number of interference in the steel production area and the limited computing resources of the edge equipment deployed in the production area, it is a challenge to develop a lightweight model to achieve rapid and accurate classification in the case of limited computing resources. In this article, an improved lightweight convolution structure (LCS) is proposed, which combines the separable structure of convolution and introduces depth convolution and point direction convolution instead of the traditional convolutional module, so as to realize the lightweight of the model. In order to ensure the classification accuracy, spatial attention and channel attention are combined to compensate for the accuracy loss after deep convolution and point direction convolution respectively. Further, in order to improve the classification accuracy, a mixed interactive attention module (MIAM) is proposed to enhance the extracted feature information after LCS. The experimental results show that the recognition accuracy of our method exceeds that of the traditional model, and the number of parameters and the amount of calculation are greatly reduced, which realizes the lightweight of the steel surface defect classification model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...