Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(8): 1884-1891, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38321960

RESUMO

Self-assembly is one of the most important issues of fabricating materials with precise chiral nanostructures. Herein, we constructed a chiral assembly system from amphiphiles containing hydrophobic/hydrophilic chiral coils bonded to hexabiphenyl, exhibiting controllable enantioselectivity over various aggregation behaviors. The chiral coils aroused various steric hindrances affecting intrinsic stacking tendency and compactness, leading to different aggregating behaviors, as concluded from the self-assembly investigation. The strong π-π stacking interaction between the long hexabiphenyl groups gave rise to a relatively compact arrangement in the aqueous solution, whereas the methyl side groups on the coil segments raised steric hindrance at the rigid-flexible interface, resulting in loose stacking and formation of nanostructures with a larger curvature. Compared with the achiral molecule 1 that formed micron-sized large sheets, molecules 2-4 containing chiral coils aggregated into nanodishes, which looked exactly like mosquito-repellent incense, to overcome surface tension. The helical structures effectively amplified chirality and exhibited strong circular dichroism (CD) signals, which indicate enantioselectivity. In addition, the relatively loose packing behavior permitted their co-assembly with a dye and aided efficient energy transfer, providing a foundation for the chiral application of supramolecules. Thus, by introducing a simple methyl side group in amphiphilic molecules, asymmetric synthesis and energy transfer efficiency can be realized.

2.
Soft Matter ; 19(35): 6683-6690, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37609871

RESUMO

A series of coil-rod-coil molecules containing a 9,10-distyrylanthracene (DSA) core was successfully synthesized. The flexible parts of these molecules are composed of different polyethylene oxide chains. These molecules with aggregation-induced luminescence properties can be assembled into micelles, spheres, and sheet-like nano-assemblies in aqueous solution and have a strong ability to form charge-transfer complexes with the electron-deficient small molecules 2,4,5,7-tetranitro-9-fluorenone and 2,4,6-trinitrophenol. Interestingly, under ultraviolet light irradiation, the DSA structure undergoes photolysis and induces the disappearance of the aggregation-induced luminescence phenomena, giving these molecules application potential as a photodegradable material. In addition, these molecules are suitable organic dyes for information encryption and anti-counterfeiting applications.

3.
Langmuir ; 39(25): 8824-8832, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294904

RESUMO

In the context of sustainable development, research regarding chirality has aroused enormous attention. Concurrently, chiral self-assembly is one of the most important subjects in supramolecular research, which can broaden the applications of chiral materials. This study focuses on the morphology control of amphiphilic rod-coil molecules composed of the rigid hexaphenyl unit and flexible oligoethylene and butoxy groups containing lateral methyl groups, carried out using an enantioseparation application. The methyl side chain being located on different blocks influences the driving force through steric hindrance, which determines the direction and degree of tilted packing during the π-π stacking of the self-assembly process. Interestingly, the amphiphilic rod-coil molecules aggregated into long helical nano-fibers, which further hierarchically aggregated into nano-sheets or nano-tubes upon increasing the concentration of the THF/H2O solution. In particular, the hierarchical-chiral assembly effectively amplified the chirality and was validated by the strong Cotton signals; playing a vital role in the enantioselective nucleophilic substitution reaction. These results provide new insights into the applications of chiral self-assemblies and soft chiral materials.

4.
Soft Matter ; 19(8): 1540-1548, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36745471

RESUMO

Stimuli-responsive assembly deformation is a key feature in constructing smart soft materials, which makes them versatile and autonomous. In this study, rod-coil amphiphilic compounds containing spiropyran (SP) groups were developed and synthesized to investigate their stimuli-responsive assembly in a solution system with 99% water content. In addition to photochromic phenomena, reversible light-mediated morphological alterations occurred in these molecular aggregates. Based on the different flexible chain segments of rod-coil amphiphiles, the initial assemblies underwent a dissociation-reassembly process under ultraviolet (UV) irradiation, whereupon they deformed or disassembled to assemblies. Furthermore, as the UV source was removed, the original nanostructures were gradually recovered again via the ring-closing reaction process. These compounds, interestingly, can selectively combine with copper ions to produce cross-linked co-assembled nanostructures. The copper ion complex solution of rod-coil amphiphilic compounds emitted unique bright blue fluorescence, which allowed for the specific visual identification of copper ions in aqueous solutions.

5.
Microporous Mesoporous Mater ; 326: 111394, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34483712

RESUMO

COVID-19 is a rapidly evolving emergency, for which there have been no specific medication found yet. Therefore, it is necessary to find a solution for this ongoing pandemic with the aid of advanced pharmaceutics. What is proposed as a solution is the repurposing of FDA approved drug such as niclosamide (NIC) having multiple pathways to inactivate the SARS-CoV-2, the specific virion that induces COVID-19. However, NIC is hardly soluble in an aqueous solution, thereby poor bioavailability, resulting in low drug efficacy. To overcome such a disadvantage, we propose here an oral formulation based on Tween 60 coated drug delivery system comprised of three different mesoporous silica biomaterials like MCM-41, SBA-15, and geopolymer encapsulated with NIC molecules. According to the release studies under a gastro/intestinal solution, the cumulative NIC release out of NIC-silica nanohybrids was found to be greatly enhanced to ~97% compared to the solubility of intact NIC (~40%) under the same condition. We also confirmed the therapeutically relevant bioavailability for NIC by performing pharmacokinetic (PK) study in rats with NIC-silica oral formulations. In addition, we discussed in detail how the PK parameters could be altered not only by the engineered porous structure and property, but also by interfacial interactions between ion-NIC dipole, NIC-NIC dipoles and/or pore wall-NIC van der Waals in the intra-pores of silica nanoparticles.

6.
Soft Matter ; 17(27): 6661-6668, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34160543

RESUMO

The aggregation-induced emission (AIE) effect is an important feature for luminescence studies, which can offer a broader range of applications for fluorescent materials. Herein, we report the morphological control and photoproperties of amphipathic propeller-shaped rod-coil molecules based on a benzene-1,3,5-tricarboxamide (BTA) unit, which restricts the intramolecular rotation and leads to the AIE effect during the self-assembly process. Investigations on the assembly of these molecules have revealed that tetragonal perforated lamella, hexagonal columnar, body-centered tetragonal micellar, and hexagonal close-packed nanostructures were spontaneously formed in the solid-state. In the solution-state, these molecules assemble into nanosheet-like aggregates, bowl-like objects, and spherical nanoparticles, respectively. The morphology of the molecular aggregates can be controlled by modifying the molecular chain length or introducing lateral methyl groups in the coil chain. Notably, these molecular assemblies exhibit strong AIE phenomena in a mixed THF/H2O solution and can be used as smart soft materials due to the restriction of their intramolecular motion.

7.
Langmuir ; 37(3): 1215-1224, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33426895

RESUMO

Self-assembled nanomaterials composed of amphiphilic oligomers with functional groups have been applied in the fields of biomimetic chemistry and on-demand delivery systems. Herein, we report the assembly behavior and unique properties of an emergent n-shaped rod-coil molecule containing an azobenzene (AZO) group upon application of an external stimulus (thermal, UV light). The n-shaped amphiphilic molecules comprising an aromatic segment based on anthracene, phenyl linked with azobenzene groups, and hydrophilic oligoether (chiral) segments self-assemble into large strip-like sheets and perforated-nanocage fragments in an aqueous environment, depending on the flexible oligoether chains. Interestingly, the nano-objects formed in aqueous solution undergo a morphological transition from sheets and nanocages to small one-dimensional nanofibers. These molecules exhibit reversible photo- and thermal-responsiveness, accompanied by a change in the supramolecular chirality caused by the conformational transitions of the rod backbone. The architecture of n-shaped amphiphilic molecules with a photosensitive group makes them ideal candidates for intelligent materials for applications in advanced materials science.

8.
RSC Adv ; 10(12): 6814-6821, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35493891

RESUMO

Hexagonal and wormhole-type mesoporous geopolymers were developed by controlling the concentration of a structure directing agent (cetrimonium bromide, CTAB) with fixed ratios of Si/Al, KOH/(Si + Al), and H2O/(Si + Al), and their detailed porous structures were confirmed by TEM, N2 adsorption-desorption and X-ray diffraction measurements. The as-prepared geopolymers were then used as templates to replicate porous carbons with various structures and porosities for CO2 adsorption. To understand the correlation between the CO2 adsorptivity and porous structures, we tuned the porosity of the geopolymer-templated carbons by modifying the structures of the geopolymers. The porous carbons obtained from the hexagonal-type porous geopolymers were found to be composed of the aggregates of carbon nanowires exhibiting large particles, while those obtained from the wormhole-like porous geopolymers were determined to be wormhole type as well, as evidenced by TEM and X-ray diffraction studies. According to the CO2 adsorption isotherms of the porous carbons, the aggregates of carbon nanowires exhibited the highest CO2 adsorptivity due to their highest microporosity and largest specific surface area.

9.
Chem Commun (Camb) ; 55(22): 3266-3269, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30810144

RESUMO

The nanostructure and morphology of mesoporous carbon obtained from a newly designed porous geopolymer template were characterized by low-voltage high-resolution scanning electron microscopy. The present porous carbon exhibited a large specific surface area and pore volume, resulting in a high CO2 uptake capacity.

10.
11.
ACS Appl Mater Interfaces ; 9(28): 23941-23948, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28653828

RESUMO

Single particle Mie calculations of near micron-sized TiO2 particles predict strong light scattering dominating the visible range that would give rise to a white appearance. We demonstrate that a polydisperse collection of these "white" particles can result in the generation of visible colors through ensemble scattering. The weighted averaging of the scattering over the particle size distribution modifies the sharp, multiple, high order scattering modes from individual particles into broad variations in the collective extinction. These extinction variations are apparent as visible colors for particles suspended in organic solvent at low concentration, or for a monolayer of particles supported on a transparent substrate viewed in front of a white light source. We further exploit the color variations on optical sensitivity to the surrounding environment to promote micron-sized TiO2 particles as stable and robust agents for detecting the optical index of homogeneous media with high contrast sensitivities. Such distribution-modulated scattering properties provide TiO2 particles an intriguing opportunity to impart color and optical sensitivity to their widespread electronic and chemical platforms such as antibacterial windows, catalysis, photocatalysis, optical sensors, and photovoltaics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...