Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 200: 105842, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582604

RESUMO

Chemical sensing systems are vital in the growth and development of insects. Orius sauteri (Poppius) (Hemiptera: Anthocoridae) is an important natural enemy of many pests. The molecular mechanism of odorant binding proteins (OBPs) binding with common insecticides is still unknow in O. sauteri. In this study, we expressed in vitro OsauOBP8 and conducted fluorescence competition binding assay to investigate the function of OsauOBP8 to insecticides. The results showed that OsauOBP8 could bind with four common insecticides (phoxim, fenitrothion, chlorpyrifos, deltamethrin). Subsequently, we used molecular docking to predict and obtained candidate six amino acid residues (K4, K6, K13, R31, K49, K55) and then mutated. The result showed that three key residues (K4, K6, R31) play important role in OsauOBP8 bound to insecticides. Our study identified the key binding sites of OsauOBP8 to insecticides and help to better understand the molecular mechanism of OBPs to insecticides in O. sauteri.


Assuntos
Heterópteros , Inseticidas , Receptores Odorantes , Animais , Simulação de Acoplamento Molecular , Receptores Odorantes/genética
2.
J Agric Food Chem ; 72(11): 5682-5689, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446420

RESUMO

The chemosensory system plays an important role in the host plants location. Plagiodera versicolora (Coleoptera: Chrysomelidae) is a worldwide leaf-eating forest pest that feeds exclusively on salicaceous trees. There is no function study of odorant binding proteins (OBPs) in P. versicolora. In the current study, we found that PverOBP37 has a high expression in male and female antennae, heads, and legs by quantitative real-time PCR. The binding properties of PverOBP37 to 18 host plant volatiles were determined by fluorescence competition binding assays. The results showed that PverOBP37 could bind to the host plant volatile, o-cymene. Furthermore, four candidate key amino acid residues (F8, Y50, F103, and R107) of PverOBP37 to o-cymene were identified by molecular docking. The functional assay to confirm Y50, F103, and R107 mutations were key amino acid residues of PverOBP37 involved in the binding to o-cymene. Knockdown of PverOBP37 and Y-tube behavioral bioassays of mated females led to a significantly reduced attraction to o-cymene. This study not only revealed the molecular mechanism of PverOBP37 but also suggested that PverOBP37 is essential to detect host plant volatiles as cues to search for egg-laying sites in P. versicolora.


Assuntos
Besouros , Receptores Odorantes , Animais , Feminino , Cimenos , Odorantes , Simulação de Acoplamento Molecular , Besouros/genética , Besouros/metabolismo , Aminoácidos/metabolismo , Receptores Odorantes/metabolismo , Proteínas de Insetos/metabolismo , Ligação Proteica
3.
Artigo em Inglês | MEDLINE | ID: mdl-37688975

RESUMO

The flower bug Orius sauteri (Heteroptera: Anthocoridae), is a polyphagous predator and a natural enemy widely used in biological pest control to micro-pests including aphids, spider mites, thrips and so on. In the present study, the transcriptome analysis of adult heads in O. sauteri were performed and identified a total of 38 chemosensory genes including 24 odorant binding proteins (OBPs) and 14 chemosensory proteins (CSPs). Subsequently, we conducted quantitative real-time PCR to detect the tissue expression level of 18 OBPs and 8 CSPs. The results showed that almost all OsauOBPs and OsauCSPs have a high expression level in the adult heads of both sexes. In addition, 5 OsauOBPs (OBP1, OBP2, OBP3, OBP4 and OBP14) have a significantly higher expressed in male heads than female, indicating that these chemosensory proteins might be involved in the male-specific behaviors such as pheromone reception and mate-seeking. This study will provide helpful reference for subsequent understanding of chemoreception mechanism in O. sauteri.


Assuntos
Afídeos , Heterópteros , Receptores Odorantes , Feminino , Masculino , Animais , Odorantes , Heterópteros/genética , Heterópteros/metabolismo , Perfilação da Expressão Gênica , Afídeos/genética , Feromônios , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Transcriptoma , Antenas de Artrópodes/metabolismo , Filogenia
4.
Int J Biol Macromol ; 252: 126338, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591429

RESUMO

Spodoptera frugiperda is a kind of polyphagous pest, and can damage a large number different host plants around the worldwide. The molecular mechanisms of two general odorant binding proteins (GOBPs) binding with general volatiles and insecticides are still blank. In this study, we investigated the function of two GOBPs in S. frugiperda, by expressing two SfruGOBPs and tested the binding affinities by the fluorescence competition binding assays. The results exhibited that SfruGOBP1 has binding affinities to 4 of 38 general volatiles and 3 of 7 insecticides. In contrast, SfruGOBP2 showed a broader ligand-binding spectrum to 21 volatiles and 4 insecticides, suggesting SfruGOBP2 may plays a more important role in perceiving host volatiles than SfruGOBP1. Furthermore, we used molecular docking and site-directed mutagenesis assay to explored the key amino acid residues of two SfruGOBP to insecticides ligand. This study provides some valuable information to exploring the olfactory mechanism of two GOBPs bound the host plant volatiles and insecticides in S. frugiperda.


Assuntos
Inseticidas , Animais , Spodoptera , Odorantes , Simulação de Acoplamento Molecular , Ligantes , Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...