Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611970

RESUMO

SBS (styrene-butadiene-styrene block copolymer) is a thermoplastic elastomer with properties most similar to rubber. SBS asphalt modifier is mainly composed of a styrene-butadiene-styrene block copolymer with a certain amount of additives and stabilizers. SBS-modified asphalt binder has always been the most commonly used pavement material both domestically and internationally. However, conventional wet-process SBS-modified asphalt binder requires manufacturers to produce it in advance and transport it to a mixing plant for blending. This has provided an opportunity for unscrupulous businesses to reduce the amount of SBS by adding other substances, allowing inferior asphalt binder to pass inspections undetected. At the same time, conventional wet-process SBS-modified asphalt tends to undergo phase separation and experience a decline in performance as the storage time increases. However, dry-process SBS-modified asphalt can be directly added at the mixing plant, effectively addressing the issues associated with conventional wet-process SBS-modified asphalt. It also helps to reduce environmental pollution to a certain extent. This study investigates the extraction process of dry-process SBS-modified asphalt binder. It clarifies the performance and modification mechanisms of two types of dry-process SBS-modified asphalt binder at different dosages through various testing methods, including basic indicators, rheological properties, infrared spectroscopy, and fluorescence microscopy. The results indicate that due to the incorporation of oil, crosslinker, solubilizer, and other substances into dry-process SBS modifier, there is a small amount of chemical reaction with asphalt in the melting process. The high- and low-temperature properties and fatigue properties of the two dry-process SBS-modified asphalt binders at a 7% dosage are close to wet SBS-modified asphalt binder at a 5% dosage.

2.
Sci Total Environ ; 927: 172312, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599403

RESUMO

The surge in urban development has resulted in a substantial accumulation of construction solid waste (CSW). However, prevailing identification methods of CSW remain predominantly two-dimensional in scope and need to be more efficient. This study employs an approach, combining simulation and experimental analyses, to delve into the factors influencing the electromagnetic scattering characteristics of CSW, investigating the feasibility of employing Synthetic Aperture Radar (SAR) to recognize CSW. The findings show that the computational time of MLFMM and PO is only 3.28 % and 0.029 % of MM among different simulation methods. The results underscore the collective impact of material types, surface structures, and curvature on the scattering characteristics of CSW. The difference in average intensity between different materials can reach up to 13 dB. Exploiting these distinctions in scattering enables the precise identification of high-value waste components, such as intact bricks and steel bars, within the intricate landscape of CSW.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...