Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-387902

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have resulted in a number of severe cases of COVID-19 and deaths worldwide. However, knowledge of SARS-CoV-2 infection, diseases and therapy remains limited, underlining the urgency of fundamental studies and drug development. Studies have shown that induction of autophagy and hijacking of autophagic machinery are essential for infection and replication of SARS-CoV-2; however, the mechanism of this manipulation and function of autophagy during SARS-CoV-2 infection remain unclear. In the present study, we identified ORF3 as an inducer of autophagy and revealed that ORF3 localizes to the ER and induces FAM134B-related ERphagy through the HMGB1-Beclin1 pathway. As a consequence, ORF3 induces ER stress and inflammatory responses through ERphagy and sensitizes cells to ER stress-induced cell death, suggesting that SARS-CoV-2 ORF3 hijacks ERphagy and then harms ER homeostasis to induce inflammatory responses through excessive ER stress. These findings reveal a sequential induction of ERphagy, ER stress and acute inflammatory responses during SARS-CoV-2 infection and provide therapeutic potential for ERphagy and ER stress-related drugs for COVID-19 treatment and prevention. ImportanceSARS-CoV-2 infection and replication require autophagosome-like double-membrane vacuoles. Inhibition of autophagy suppresses viral replication, indicating the essential role of autophagy in SARS-CoV-2 infection. However, how SARS-CoV-2 hijacks autophagy and the function of autophagy in the disease progression remain unknown. Here, we reveal that SARS-CoV-2 ORF3 induces ERphagy and consequently induces ER stress to trigger acute inflammatory responses and enhance sensitivity to ER stress-induced apoptosis. Our studies uncover ERphagy-induced inflammatory responses during SARS-CoV-2 infection and provide a promising therapeutic approach for treating SARS-CoV-2 infection and inflammatory responses in COVID-19 by manipulating autophagy and ER stress.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-252973

RESUMO

Severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2), the etiologic agent of the coronavirus disease 2019 (COVID-19), has a catastrophic effect on human health and society. Clinical findings indicated that the suppression of innate antiviral immunity, especially the type I and III interferon (IFN) production, contributes to the pathogenesis of COVID-19. However, how SARS-CoV-2 evades antiviral immunity still needs further investigations. Here, we reported that the open reading frame 9b (ORF9b) protein encoded by the SARS-CoV-2 genome inhibits the activation of type I and III IFN response by targeting multiple molecules of innate antiviral signaling pathways. SARS-CoV-2 ORF9b impaired the induction of type I and III IFNs by Sendai virus or the dsRNA mimic poly (I:C). SARS-CoV-2 ORF9b inhibits the activation of type I and III IFNs induced by the components of cytosolic dsRNA-sensing pathways of RIG-I/MDA5-MAVS signaling, including RIG-I, MDA-5, MAVS, TBK1, and IKK{varepsilon} rather than IRF3-5D, the active form of IRF3. SARS-CoV-2 ORF9b also suppressed the induction of type I and III IFNs by TRIF and STING, the adaptor protein of endosome RNA-sensing pathway of TLR3-TRIF signaling and the adaptor protein of cytosolic DNA-sensing pathway of cGAS-STING signaling, respectively. Mechanistically, SARS-CoV-2 ORF9b protein interacts with RIG-I, MDA-5, MAVS, TRIF, STING, TBK1, and prevents TBK1 phosphorylation, thus impeding the phosphorylation and nuclear trans-localization of IRF3 activation. Overexpression of SARS-CoV-2 ORF9b facilitates the replication of the vesicular stomatitis virus. Therefore, SARS-CoV-2 ORF9b negatively regulates antiviral immunity, thus, facilitate virus replication. This study contributes to our understanding of the molecular mechanism of how SARS-CoV-2 impaired antiviral immunity and providing an essential clue to the pathogenesis of COVID-19.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-233023

RESUMO

Coronavirus possesses the largest RNA genome among all the RNA viruses. Its genome encodes about 29 proteins. Most of the viral proteins are non-structural proteins (NSP) except envelop (E), membrane (M), nucleocapsid (N) and Spike (S) proteins that constitute the viral nucleocapsid, envelop and surface. We have recently cloned all the 29 SARS-CoV-2 genes into vectors for their expressions in mammalian cells except NSP11 that has only 14 amino acids (aa). We are able to express all the 28 cloned SARS-CoV-2 genes in human cells to characterize their subcellular distributions. The proteins of SARS-CoV-2 are mostly cytoplasmic but some are both cytoplasmic and nuclear. Those punctate staining proteins were further investigated by immunofluorescent assay (IFA) using specific antibodies or by co-transfection with an organelle marker-expressing plasmid. As a result, we found that NSP15, ORF6, M and ORF7a are related to Golgi apparatus, and that ORF7b, ORF8 and ORF10 colocalize with endoplasmic reticulum (ER). Interestingly, ORF3a distributes in cell membrane, early endosome, endosome, late endosome and lysosome, which suggests that ORF3a might help the infected virus to usurp endosome and lysosome for viral use. Furthermore, we revealed that NSP13 colocalized with SC35, a protein standing for splicing compartments in the nucleus. Our studies for the first time visualized the subcellular locations of SARS-CoV-2 proteins and might provide novel insights into the viral proteins biological functions.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-222026

RESUMO

The coronavirus disease 2019 (COVID-19) caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has quickly spread worldwide and has infected more than ten million individuals. One of the typical features of COVID-19 is that both type I and III interferon (IFN)-mediated antiviral immunity are suppressed. However, the molecular mechanism by which SARS-CoV-2 evades this antiviral immunity remains elusive. Here, we report that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway of RIG-I/MDA-5-MAVS signaling. The SARS-CoV2 M protein also dampens type I and III IFN induction stimulated by Sendai virus infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1 and prevents the formation of a multi-protein complex containing RIG-I, MAVS, TRAF3, and TBK1, thus impeding IRF3 phosphorylation, nuclear translocation, and activation. Consequently, the ectopic expression of the SARS-CoV2 M protein facilitates the replication of vesicular stomatitis virus (VSV). Taken together, the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of the SARS-CoV-2-induced antiviral immune suppression and sheds light on the pathogenic mechanism of COVID-19.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20040980

RESUMO

Severe acute respiratory syndrome coronavirus 2 infection causing coronavirus disease 2019 has spread worldwide. Whether antibodies are important for the adaptive immune responses against SARS-CoV-2 infection needs to be determined. Here, 26 cases of COVID-19 in Jinan, China, were examined and shown to be mild or with common clinical symptoms and no cases of severe symptoms were found among these patients. A striking feature of some patients is that SARS-CoV-2 could exist in patients who have virus-specific IgG antibodies for a very long period, with two cases for up to 50 days. One COVID-19 patient who did not produce any SARS-CoV-2-bound IgG successfully cleared SARS-CoV-2 after 46 days of illness, revealing that without antibody-mediated adaptive immunity, innate immunity may still be powerful enough to eliminate SARS-CoV-2. Overall, this report may provide a basis for further analysis of both innate and adaptive immunity in SARS-CoV-2 clearance, especially in non-severe cases. This study also has implications for understanding the pathogenesis and treatment of SARS-CoV-2.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-963348

RESUMO

The ongoing outbreak of a new coronavirus (2019-nCoV) causes an epidemic of acute respiratory syndrome in humans. 2019-nCoV rapidly spread to national regions and multiple other countries, thus, pose a serious threat to public health. Recent studies show that spike (S) proteins of 2019-nCoV and SARS-CoV may use the same host cell receptor called angiotensin-converting enzyme 2 (ACE2) for entering into host cells. The affinity between ACE2 and 2019-nCoV S is much higher than ACE2 binding to SARS-CoV S protein, explaining that why 2019-nCoV seems to be more readily transmitted from the human to human. Here, we reported that ACE2 can be significantly upregulated after infection of various viruses including SARS-CoV and MERS-CoV. Basing on findings here, we propose that coronavirus infection can positively induce its cellular entry receptor to accelerate their replication and spread, thus drugs targeting ACE2 expression may be prepared for the future emerging infectious diseases caused by this cluster of viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...