Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 18(1): 99-108, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20577261

RESUMO

L-glutamate, the major excitatory neurotransmitter, also has a role in non-neuronal tissues and modulates immune responses. Whether NMDA receptor (NMDAR) signalling is involved in T-cell development is unknown. In this study, we show that mouse thymocytes expressed an array of glutamate receptors, including NMDARs subunits. Sustained calcium (Ca(2+)) signals and caspase-3 activation in thymocytes were induced by interaction with antigen-pulsed dendritic cells (DCs) and were inhibited by NMDAR antagonists MK801 and memantine. NMDARs were transiently activated, triggered the sustained Ca(2+) signal and were corecruited with the PDZ-domain adaptor postsynaptic density (PSD)-95 to thymocyte-DC contact zones. Although T-cell receptor (TCR) activation was sufficient for relocalization of NMDAR and PSD-95 at the contact zone, NMDAR could be activated only in a synaptic context. In these T-DC contacts, thymocyte activation occurred in the absence of exogenous glutamate, indicating that DCs could be a physiological source of glutamate. DCs expressed glutamate, glutamate-specific vesicular glutamate transporters and were capable of fast glutamate release through a Ca(2+)-dependent mechanism. We suggest that glutamate released by DCs could elicit focal responses through NMDAR-signalling in T cells undergoing apoptosis. Thus, synapses between T and DCs could provide a functional platform for coupling TCR activation and NMDAR signalling, which might reflect on T-cell development and modulation of the immune response.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Caspase 3/metabolismo , Células Dendríticas/imunologia , Receptores de N-Metil-D-Aspartato/metabolismo , Glândula Tireoide/imunologia , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Apoptose , Células Dendríticas/metabolismo , Proteína 4 Homóloga a Disks-Large , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Guanilato Quinases , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Memantina/farmacologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Glândula Tireoide/citologia , Glândula Tireoide/metabolismo
2.
Br J Pharmacol ; 153 Suppl 1: S428-37, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18311157

RESUMO

Glycogen synthase kinase-3 (GSK-3), an important component of the glycogen metabolism pathway, is highly expressed in the CNS. It has been implicated in major neurological disorders including Alzheimer's disease, schizophrenia and bipolar disorders. Despite its central role in these conditions it was not known until recently whether GSK-3 has neuronal-specific functions under normal conditions. However recent work has shown that GSK-3 is involved in the regulation of, and cross-talk between, two major forms of synaptic plasticity, N-methyl-D-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) and NMDAR-dependent long-term depression (LTD). The present article summarizes this recent work and discusses its potential relevance to the treatment of neurological disorders.


Assuntos
Quinase 3 da Glicogênio Sintase/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Quinase 3 da Glicogênio Sintase/efeitos dos fármacos , Humanos , Plasticidade Neuronal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/efeitos dos fármacos
3.
J Neurophysiol ; 84(3): 1464-74, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10980019

RESUMO

Hypophysiotropic somatostatin (SRIF) and growth hormone-releasing hormone (GHRH) neurons are primarily involved in the neurohormonal control of growth hormone (GH) secretion. They are located in periventricular (PEV) and arcuate (ARC) hypothalamic nuclei, respectively, but their connectivity is not well defined. To better understand the neuronal network involved in the control of GH secretion, connections from PEV to ARC neurons were reconstructed in vitro and neuronal phenotypes assessed by single-cell multiplex RT-PCR. Of 814 stimulated PEV neurons, monosynaptic responses were detected in only 45 ARC neurons. Monosynaptic excitatory currents were detected in 29 ARC neurons and inhibitory currents in 16, indicating a 2/1 ratio for excitatory versus inhibitory connections. Galanin (GAL), NPY, pro-opiomelanocortin (POMC), and SRIF mRNAs were detected in neurons from both nuclei but GHRH mRNA almost exclusively in ARC. Among the five SRIF receptors, only sst1 and sst2 were expressed, in 94% of ARC and 59% of PEV neurons, respectively. Of 128 theoritical combinations between neuropeptides and sst receptors, only 22 were represented in PEV and 25 in ARC. For PEV neurons, neuropeptide phenotypes did not influence excitatory connections. However, the occurrence of presynaptic sst receptors on GAL and SRIF PEV neurons significantly increased their probability of connection to ARC neurons. GHRH ARC neurons expressing sst2, but not sst1, receptors were always connected with PEV neurons. Physiological responses to sst1 (CH-275) or sst2 (Octreotide) agonists were always correlated with the detection of respective sst mRNAs. In conclusion, 1) SRIF-modulated excitatory transmission develops in vitro from PEV to ARC neurons, 2) ARC GHRH neurons bearing sst2 receptors appears directly controlled by fast glutamatergic transmission from PEV neurons simultaneously expressing one to four neuropeptides, 3) GHRH neurons bearing sst1 receptors lack this control, and 4) these results suggest that fast excitatory neurotransmission and neuropeptide modulation can derive from a small subset of PEV hypothalamic neurons targeted at ARC neuronal subpopulations.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Somatostatina/metabolismo , Transmissão Sináptica/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/embriologia , Separação Celular , Técnicas de Cocultura , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Galanina/análise , Galanina/genética , Hormônio do Crescimento/biossíntese , Hormônio Liberador de Hormônio do Crescimento/análise , Hormônio Liberador de Hormônio do Crescimento/genética , Camundongos , Rede Nervosa/metabolismo , Neurônios/química , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeo Y/análise , Neuropeptídeo Y/genética , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/embriologia , Fenótipo , Pró-Opiomelanocortina/análise , Pró-Opiomelanocortina/genética , RNA Mensageiro/análise , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/análise , Receptores de Somatostatina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Somatostatina/análise , Somatostatina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...