Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458537

RESUMO

The generation and manipulation of ultracold atomic ensembles in the quantum regime require the application of dynamically controllable microwave fields with ultra-low noise performance. Here, we present a low-phase-noise microwave source with two independently controllable output paths. Both paths generate frequencies in the range of 6.835 GHz ± 25 MHz for hyperfine transitions in 87Rb. The presented microwave source combines two commercially available frequency synthesizers: an ultra-low-noise oscillator at 7 GHz and a direct digital synthesizer for radio frequencies. We demonstrate a low integrated phase noise of 480 µrad in the range of 10 Hz to 100 kHz and fast updates of frequency, amplitude, and phase in sub-µs time scales. The highly dynamic control enables the generation of shaped pulse forms and the deployment of composite pulses to suppress the influence of various noise sources.

2.
Science ; 360(6387): 416-418, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29700263

RESUMO

Modern quantum technologies in the fields of quantum computing, quantum simulation, and quantum metrology require the creation and control of large ensembles of entangled particles. In ultracold ensembles of neutral atoms, nonclassical states have been generated with mutual entanglement among thousands of particles. The entanglement generation relies on the fundamental particle-exchange symmetry in ensembles of identical particles, which lacks the standard notion of entanglement between clearly definable subsystems. Here, we present the generation of entanglement between two spatially separated clouds by splitting an ensemble of ultracold identical particles prepared in a twin Fock state. Because the clouds can be addressed individually, our experiments open a path to exploit the available entangled states of indistinguishable particles for quantum information applications.

3.
Phys Rev Lett ; 112(15): 155304, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24785048

RESUMO

Recent experiments demonstrate the production of many thousands of neutral atoms entangled in their spin degrees of freedom. We present a criterion for estimating the amount of entanglement based on a measurement of the global spin. It outperforms previous criteria and applies to a wider class of entangled states, including Dicke states. Experimentally, we produce a Dicke-like state using spin dynamics in a Bose-Einstein condensate. Our criterion proves that it contains at least genuine 28-particle entanglement. We infer a generalized squeezing parameter of -11.4(5) dB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA