Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-444369

RESUMO

Beginning in late 2020, the emergence and spread of multiple variant SARS-CoV-2 strains harboring mutations which may enable immune escape necessitates the rapid evaluation of second generation COVID-19 vaccines, with the goal of inducing optimized immune responses that are broadly protective. Here we demonstrate in a mouse immunogenicity study that two doses of a modified B.1.351 spike (S)-Trimer vaccine (B.1.351 S-Trimer) candidate can induce strong humoral immune responses that can broadly neutralize both the original SARS-CoV-2 strain (Wuhan-Hu-1) and Variants of Concern (VOCs), including the UK variant (B.1.1.7), South African variant (B.1.351) and Brazil variant (P.1). Furthermore, while immunization with two doses (prime-boost) of Prototype S-Trimer vaccine (based on the original SARS-CoV-2 strain) induced lower levels of cross-reactive neutralization against the B.1.351 variant, a third dose (booster) administered with either Prototype S-Trimer or B.1.351 S-Trimer was able to increase neutralizing antibody titers against B.1.351 to levels comparable to neutralizing antibody titers against the original strain elicited by two doses of Prototype S-Trimer.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-311027

RESUMO

SARS-CoV-2 is the underlying cause for the COVID-19 pandemic. Like most enveloped RNA viruses, SARS-CoV-2 uses a homotrimeric surface antigen to gain entry into host cells. Here we describe S-Trimer, a native-like trimeric subunit vaccine candidate for COVID-19 based on Trimer-Tag technology. Immunization of S-Trimer with either AS03 (oil-in-water emulsion) or CpG 1018 (TLR9 agonist) plus alum adjuvants induced high-levels of neutralizing antibodies and Th1-biased cellular immune responses in animal models. Moreover, rhesus macaques immunized with adjuvanted S-Trimer were protected from SARS-CoV-2 challenge compared to vehicle controls, based on clinical observations and reduction of viral loads in lungs. Trimer-Tag may be an important new platform technology for scalable production and rapid development of safe and effective subunit vaccines against current and future emerging RNA viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...