Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin J Sport Med ; 25(1): 55-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24451696

RESUMO

OBJECTIVE: To evaluate the chronic effects of a static stretching program on the muscle architecture of biceps femoris (BF) and vastus lateralis (VL) muscles in ultrasound (US) images. DESIGN: Randomized controlled longitudinal trial. SETTING: Biomechanics Laboratory of Physical Education School of the Army, Rio de Janeiro, Brazil. PARTICIPANTS: The study included 24 healthy and physically active male volunteers (19.05 ± 1.40 years, 1.73 ± 0.07 m, and 73.15 ± 8.33 kg), randomly allocated to 1 of 2 groups: stretching group (SG, n = 12) and control group (n = 12). INTERVENTIONS: The SG was submitted to 3 sets of 30 seconds of static stretching 3 times a week during 8 weeks. MAIN OUTCOME MEASURES: Ultrasound equipment (7.5 MHz) was used for the evaluation of BF and VL muscle architecture variables (pennation angle, fiber length, muscle thickness, and fascicle displacement) before and after training. Knee range of motion (ROM) and isometric flexion and extension torque (TQ) were also measured. RESULTS: There were no significant changes in muscle architecture, TQ, and maximum knee flexion angle (P > 0.05). However, maximum knee extension angle (MEA) increased significantly in the SG (pretraining: 159.37 ± 7.27 degrees and posttraining: 168.9 ± 3.7 degrees; P < 0.05). CONCLUSIONS: Volume or intensity (or both) of the stretching protocol was insufficient to cause structural changes in the VL and BF muscles. The increase in MEA could not be explained by muscle architecture changes. CLINICAL RELEVANCE: To describe changes in the VL and BF muscle tendon unit using US after a long-term stretching program to identify which structures are responsible for ROM increase.


Assuntos
Fibras Musculares Esqueléticas/diagnóstico por imagem , Exercícios de Alongamento Muscular/métodos , Músculo Quadríceps/diagnóstico por imagem , Adolescente , Humanos , Articulação do Joelho/fisiologia , Estudos Longitudinais , Masculino , Força Muscular/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/diagnóstico por imagem , Tamanho do Órgão , Músculo Quadríceps/anatomia & histologia , Amplitude de Movimento Articular/fisiologia , Coxa da Perna , Ultrassonografia , Adulto Jovem
2.
Artigo em Inglês | MEDLINE | ID: mdl-21096017

RESUMO

This work applies the Ultrasound Biomicroscopy (UBM) technique to quantify the pennation angle (PA) and muscle thickness (MT) of rats' gastrocnemius muscle and to determine the reliability of these measurements. UBM (40MHz) images of five Wistar female rats were acquired at two ankle positions (neutral and full extension) and in two different days. A total of 320 images were processed to quantify PA and MT and a statistical analysis assessed data variability and reliability. The coefficients of variation were 9.37 and 3.97% for PA and MT, respectively, for the ankle at full extension and 15.41 and 4.99% for the ankle at neutral position. Pearson correlation between two repeated measurements in the same image were 0.93 and 0.99 for PA and MT, respectively. The results indicate that UBM is suitable for quantitative muscle architectural characterization and can be used in future muscle biomechanical studies.


Assuntos
Aumento da Imagem/métodos , Microscopia Acústica/métodos , Músculo Esquelético/citologia , Músculo Esquelético/diagnóstico por imagem , Animais , Feminino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...