Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(1): e0210496, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30653553

RESUMO

Inland waters are unique ecosystems offering services and habitat resources upon which many species depend. Despite the importance of, and threats to, inland water, global assessments of protected area (PA) coverage and trends have focused on land habitats or have assessed land and inland waters together. We here provide the first assessment of the level of protection of inland open surface waters and their trends (1984-2015) within PAs for all countries, using a globally consistent, high-resolution (30 m) and validated dataset on permanent and seasonal surface waters based on Landsat images. Globally, 15% of inland surface waters are covered by PAs with mapped boundaries. Estimated inland water protection increases to 16.4% if PAs with reported area but delineated only as points are included as circular buffers. These coverage estimates slightly exceed the comparable figure for land but fall below the 17% goal of the Convention on Biological Diversity's Aichi Target 11 for 2020. Protection levels are very uneven across countries, half of which do not yet meet the 17% target. The lowest coverage of surface water by PAs (<5%) was found in Africa and in parts of Asia. There was a global trend of permanent water losses and seasonal water gains within PAs, concomitant with an increase of both water types outside PAs. In 38% of countries, PAs lost over 5% of permanent water. Global protection targets for inland waters may well be met by 2020, but much stronger efforts are required to ensure their effective conservation, which will depend not only on sound PA governance and management but also on the sustainable use of water resources outside PAs. Given the pressures on water in a rapidly changing world, integrated management planning of water resources involving multiple sectors and entire basins is therefore necessary.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Recursos Hídricos , Abastecimento de Água/estatística & dados numéricos , Animais , Biodiversidade , Conservação dos Recursos Naturais/tendências , Agricultura Florestal/estatística & dados numéricos , Geografia , Humanos , Árvores/classificação , Árvores/crescimento & desenvolvimento
2.
Sci Rep ; 8(1): 12876, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150698

RESUMO

Changes in coastal morphology have broad consequences for the sustainability of coastal communities, structures and ecosystems. Although coasts are monitored locally in many places, understanding long-term changes at a global scale remains a challenge. Here we present a global and consistent evaluation of coastal morphodynamics over 32 years (1984-2015) based on satellite observations. Land losses and gains were estimated from the changes in water presence along more than 2 million virtual transects. We find that the overall surface of eroded land is about 28,000 km2, twice the surface of gained land, and that often the extent of erosion and accretion is in the order of km. Anthropogenic factors clearly emerge as the dominant driver of change, both as planned exploitation of coastal resources, such as building coastal structures, and as unforeseen side effects of human activities, for example the installment of dams, irrigation systems and structures that modify the flux of sediments, or the clearing of coastal ecosystems, such as mangrove forests. Another important driver is the occurrence of natural disasters such as tsunamis and extreme storms. The observed global trend in coastal erosion could be enhanced by Sea Level Rise and more frequent extreme events under a changing climate.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental , Algoritmos , Ecossistema , Humanos , Modelos Teóricos , Imagens de Satélites
3.
Nature ; 540(7633): 418-422, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27926733

RESUMO

The location and persistence of surface water (inland and coastal) is both affected by climate and human activity and affects climate, biological diversity and human wellbeing. Global data sets documenting surface water location and seasonality have been produced from inventories and national descriptions, statistical extrapolation of regional data and satellite imagery, but measuring long-term changes at high resolution remains a challenge. Here, using three million Landsat satellite images, we quantify changes in global surface water over the past 32 years at 30-metre resolution. We record the months and years when water was present, where occurrence changed and what form changes took in terms of seasonality and persistence. Between 1984 and 2015 permanent surface water has disappeared from an area of almost 90,000 square kilometres, roughly equivalent to that of Lake Superior, though new permanent bodies of surface water covering 184,000 square kilometres have formed elsewhere. All continental regions show a net increase in permanent water, except Oceania, which has a fractional (one per cent) net loss. Much of the increase is from reservoir filling, although climate change is also implicated. Loss is more geographically concentrated than gain. Over 70 per cent of global net permanent water loss occurred in the Middle East and Central Asia, linked to drought and human actions including river diversion or damming and unregulated withdrawal. Losses in Australia and the USA linked to long-term droughts are also evident. This globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities. We anticipate that this freely available data will improve the modelling of surface forcing, provide evidence of state and change in wetland ecotones (the transition areas between biomes), and inform water-management decision-making.


Assuntos
Mapeamento Geográfico , Análise Espaço-Temporal , Água/análise , Ásia , Austrália , Mudança Climática , Tomada de Decisões , Secas , História do Século XX , História do Século XXI , Atividades Humanas , Oriente Médio , Rios , Imagens de Satélites , Estados Unidos , Abastecimento de Água/estatística & dados numéricos , Áreas Alagadas
4.
Artigo em Inglês | MEDLINE | ID: mdl-23971018

RESUMO

BACKGROUND: The indigenous Nenets reindeer herders in northern Russia annually migrate several hundred kilometers between summer and winter pastures. In the warming climate, ice-rich permafrost and glaciers are being significantly reduced and will eventually disappear from parts of the Arctic. The emergent changes in hydrological cycles have already led to substantial increases in open water that stays unfrozen for longer periods of time. This environmental change has been reported to compromise the nomadic Nenets' traditional way of life because the presence of new water in the tundra reduces the Nenets' ability to travel by foot, sled, or motor vehicle from the summer transitory tundra campsites in order to access healthcare centers in villages. New water can also impede their access to family and community at other herder camps and in the villages. Although regional and global models predicting hydrologic changes due to climate changes exist, the spatial resolution of these models is too coarse for studying how increases in open water affect health and livelihoods. To anticipate the full health impact of hydrologic changes, the current gap between globally forecasted scenarios and locally forecasted hydrologic scenarios needs to be bridged. OBJECTIVES: We studied the effects of the autumn temperature anomalies and increases in open water on health care access and transmigration of reindeer herders on the Kanin Peninsula. DESIGN: Correlational and time series analyses were completed. METHODS: The study population consisted of 370 full-time, nomadic reindeer herders. We utilized clinical visit records, studied surface temperature anomalies during autumn migrations, and used remotely sensed imagery to detect water bodies. Spearman correlation was used to measure the relationship between temperature anomalies and the annual arrival of the herders at the Nes clinic for preventive and primary care. Piecewise regression was used to model change in mean autumnal temperature anomalies over time. We also created a water body product to detect inter-annual changes in water area. RESULTS: Correlation between arrivals to the Nes clinic and temperature anomalies during the fall transmigration (1979-2011) was r = 0.64, p = 0.0004; 95% CI (0.31; 0.82). Regression analysis estimated that mean temperature anomalies during the fall migration in September-December were stochastically stationary pre-1991 and have been rising significantly (p < 0.001) since then. The rate of change was estimated at +0.1351°C/year, SE = 0.0328, 95% CI (+0.0694, +0.2007). The amount of detected water fluctuated significantly interannually (620-800 km(2)). CONCLUSIONS: Later arrival of freezing temperatures in the autumn followed by the earlier spring thaws and more open water delay transmigration and reduce herders' access to health care. The recently observed delays in arrival to the clinic are likely related to the warming trend and to concomitant hydrologic changes.


Assuntos
Povo Asiático , Água Doce , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Serviços de Saúde do Indígena/estatística & dados numéricos , Temperatura , Criação de Animais Domésticos , Migração Animal , Animais , Regiões Árticas , Mudança Climática , Humanos , Rena , Federação Russa
5.
Philos Trans R Soc Lond B Biol Sci ; 368(1625): 20120300, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23878331

RESUMO

This paper presents a map of Africa's rainforests for 2005. Derived from moderate resolution imaging spectroradiometer data at a spatial resolution of 250 m and with an overall accuracy of 84%, this map provides new levels of spatial and thematic detail. The map is accompanied by measurements of deforestation between 1990, 2000 and 2010 for West Africa, Central Africa and Madagascar derived from a systematic sample of Landsat images-imagery from equivalent platforms is used to fill gaps in the Landsat record. Net deforestation is estimated at 0.28% yr(-1) for the period 1990-2000 and 0.14% yr(-1) for the period 2000-2010. West Africa and Madagascar exhibit a much higher deforestation rate than the Congo Basin, for example, three times higher for West Africa and nine times higher for Madagascar. Analysis of variance over the Congo Basin is then used to show that expanding agriculture and increasing fuelwood demands are key drivers of deforestation in the region, whereas well-controlled timber exploitation programmes have little or no direct influence on forest-cover reduction at present. Rural and urban population concentrations and fluxes are also identified as strong underlying causes of deforestation in this study.


Assuntos
Ecossistema , Árvores , Clima Tropical , África , Agricultura , Ciclo do Carbono , Mudança Climática , Conservação dos Recursos Naturais , Humanos , Chuva , População Rural , Fatores de Tempo , Árvores/metabolismo , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...