Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 43(9): 2034-2037, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714739

RESUMO

Quantum frequency conversion is important in quantum networks to interface nodes operating at different wavelengths and to enable long-distance quantum communication using telecommunications wavelengths. Unfortunately, frequency conversion in actual devices is not a noise-free process. One main source of noise is spontaneous Raman scattering, which can be reduced by lowering the device operating temperature. We explore frequency conversion of 1554 nm photons to 837 nm using a 1813 nm pump in a periodically poled lithium niobate waveguide device. By reducing the temperature from 85°C to 40°C, we show a three-fold reduction in dark count rates, which is in good agreement with theory.

2.
Sci Rep ; 6: 38908, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27996014

RESUMO

We generate photon pairs in a-Si:H microrings using a CW pump, and find the Kerr coefficient of a-Si:H to be 3.73 ± 0.25 × 10-17m2/W. By measuring the Q factor with coupled power we find that the loss in the a-Si:H micro-rings scales linearly with power, and therefore cannot originate from two photon absorption. Theoretically comparing a-Si:H and c-Si micro-ring pair sources, we show that the high Kerr coefficient of this sample of a-Si:H is best utilized for microrings with Q factors below 103, but that for higher Q factor devices the photon pair rate is greatly suppressed due to the first order loss.

3.
Nat Commun ; 6: 8955, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26597223

RESUMO

Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

4.
Opt Express ; 23(10): 12732-9, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26074527

RESUMO

We measure fast carrier decay rates (6 ps) in GaAs photonic crystal cavities with resonances near the GaAs bandgap energy at room temperature using a pump-probe measurement. Carriers generated via photoexcitation using an above-band femtosecond pulse cause a substantial blue-shift of three time the cavity linewidth for the cavity peak. The experimental results are compared to theoretical models based on free carrier effects near the GaAs band edge. The probe transmission is modified by nearly 30% for an estimated above-band pump energy of 4.2 fJ absorbed in the GaAs slab.

5.
Phys Rev Lett ; 114(18): 180502, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-26000991

RESUMO

In quantum key distribution (QKD), the bit error rate is used to estimate the information leakage and hence determines the amount of privacy amplification-making the final key private by shortening the key. In general, there exists a threshold of the error rate for each scheme, above which no secure key can be generated. This threshold puts a restriction on the environment noises. For example, a widely used QKD protocol, the Bennett-Brassard protocol, cannot tolerate error rates beyond 25%. A new protocol, round-robin differential phase-shifted (RRDPS) QKD, essentially removes this restriction and can in principle tolerate more environment disturbance. Here, we propose and experimentally demonstrate a passive RRDPS QKD scheme. In particular, our 500 MHz passive RRDPS QKD system is able to generate a secure key over 50 km with a bit error rate as high as 29%. This scheme should find its applications in noisy environment conditions.

6.
Opt Lett ; 40(7): 1579-82, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25831389

RESUMO

A micro-pulse lidar at eye-safe wavelength is constructed based on an upconversion single-photon detector. The ultralow-noise detector enables using integration technique to improve the signal-to-noise ratio of the atmospheric backscattering even at daytime. With pulse energy of 110 µJ, pulse repetition rate of 15 kHz, optical antenna diameter of 100 mm and integration time of 5 min, a horizontal detection range of 7 km is realized. In the demonstration experiment, atmospheric visibility over 24 h is monitored continuously, with results in accordance with the weather forecasts.

7.
Opt Express ; 22(4): 3797-810, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663700

RESUMO

We utilize cross-phase modulation to observe all-optical switching in microring resonators fabricated with hydrogenated amorphous silicon (a-Si:H). Using 2.7-ps pulses from a mode-locked fiber laser in the telecom C-band, we observe optical switching of a cw telecom-band probe with full-width at half-maximum switching times of 14.8 ps, using approximately 720 fJ of energy deposited in the microring. In comparison with telecom-band optical switching in undoped crystalline silicon microrings, a-Si:H exhibits substantially higher switching speeds due to reduced impact of free-carrier processes.

8.
Opt Lett ; 38(23): 4985-7, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24281489

RESUMO

We have demonstrated upconversion detection at the single photon level in the 2 µm spectral window using a pump wavelength near 1550 nm, a periodically poled lithium niobate (PPLN) waveguide, and a volume Bragg grating (VBG) to reduce noise. We achieve a system photon detection efficiency of 10%, with a noise count rate of 24,500 counts per second, competitive with other 2 µm single photon detection technologies. This detector has potential applications in environmental gas monitoring, life science, and classical and quantum communication.

9.
Opt Express ; 21(19): 22523-31, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24104141

RESUMO

We investigate the spectral response of an upconversion detector theoretically and experimentally, and discuss implications for its use as an infrared spectrometer. Upconversion detection is based on high-conversion-efficiency, sum-frequency generation (SFG). The spectral selectivity of an upconversion spectrometer is determined by the SFG spectral response function. This function changes with varying pump power. Working at maximum internal conversion efficiency is desirable for high sensitivity of the system, but the spectral response function is different at this pump power compared to the response function at low power. We calculate the theoretical spectral response of the upconversion detector as a function of pump power and obtain excellent agreement with upconversion spectra measured in a periodically poled LiNbO3 waveguide.

10.
Phys Rev Lett ; 111(13): 130502, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116758

RESUMO

Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

11.
Opt Express ; 21(21): 24674-9, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24150311

RESUMO

We demonstrate a photon-counting optical time-domain reflectometry with 42.19 dB dynamic range using an ultra-low noise up-conversion single photon detector. By employing the long-wave pump technique and a volume Bragg grating, we achieve a noise equivalent power of -139.7 dBm/√Hz for our detector. We perform the OTDR experiments using a fiber of length approximate 217 km, and show that our system can identify defects along the entire fiber length in a measurement time of 13 minutes.

12.
Nat Commun ; 4: 2228, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23887066

RESUMO

Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin-photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin-photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin-photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.

13.
Opt Express ; 21(12): 13986-91, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787588

RESUMO

We demonstrate up-conversion single-photon detection for the 1550-nm telecommunications band using a PPLN waveguide, long-wavelength pump, and narrowband filtering using a volume Bragg grating. We achieve total-system detection efficiency of around 30% with noise at the dark-count level of a Silicon APD. Based on the new detector, a single-pixel up-conversion infrared spectrometer with a noise equivalent power of -142 dBm Hz(-1/2) was demonstrated, which was as good as a liquid nitrogen cooled CCD camera.


Assuntos
Refratometria/instrumentação , Análise Espectral/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Telecomunicações/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Razão Sinal-Ruído
14.
Opt Lett ; 38(8): 1310-2, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23595468

RESUMO

We demonstrate low-noise and efficient frequency conversion by sum-frequency mixing in a periodically poled LiNbO(3) (PPLN) waveguide. Using a 1556 nm pump, 1302 nm photons are efficiently converted to 709 nm photons. We obtain 70% conversion efficiency in the PPLN waveguide and >50% external conversion efficiency with 600 noise counts per second at peak conversion with continuous-wave pumping. We simultaneously achieve low noise and high conversion efficiency by careful spectral filtering. We discuss the impact of low-noise frequency translation on single-photon upconversion detection and quantum information applications.

15.
Opt Express ; 20(25): 27510-9, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23262701

RESUMO

Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-µm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-µm quantum channels.


Assuntos
Lasers , Fótons , Pontos Quânticos , Telecomunicações/instrumentação , Campos Eletromagnéticos , Eletrônica/métodos , Nióbio/química , Óxidos/química
16.
Nature ; 491(7424): 421-5, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23151585

RESUMO

Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.

17.
Appl Opt ; 49(24): 4489-93, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20733617

RESUMO

The intracavity signal and idler pulses of a low-loss synchronously pumped doubly resonant optical parametric oscillator were characterized experimentally and simulated numerically versus cavity-length detuning. At operation several hundreds of times above threshold, the detunings that maximize the intracavity average power do not necessarily maximize the temporal overlap of the signal and idler pulses, as is desirable for devices making use of intracavity mixing. Independent control of the signal and idler cavity lengths allowed control of the widths and temporal positioning of the pulses. Numerical studies were performed exploring the intracavity power and temporal overlap of the signal and idler pulses under various group-velocity-mismatch conditions. There was good agreement between the experimental and numerical simulation results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...