Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(5): 1076-1100, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428389

RESUMO

Genome editing has been a transformative force in the life sciences and human medicine, offering unprecedented opportunities to dissect complex biological processes and treat the underlying causes of many genetic diseases. CRISPR-based technologies, with their remarkable efficiency and easy programmability, stand at the forefront of this revolution. In this Review, we discuss the current state of CRISPR gene editing technologies in both research and therapy, highlighting limitations that constrain them and the technological innovations that have been developed in recent years to address them. Additionally, we examine and summarize the current landscape of gene editing applications in the context of human health and therapeutics. Finally, we outline potential future developments that could shape gene editing technologies and their applications in the coming years.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Disciplinas das Ciências Biológicas , Terapia Genética , Tecnologia
2.
CRISPR J ; 5(5): 642-659, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36206027

RESUMO

CRISPR-Cas9 has emerged as a major genome manipulation tool. As Cas9 can cause off-target effects, several methods for controlling the expression of CRISPR systems were developed. Recent studies have shown that CRISPR activity could be controlled by sensing expression levels of endogenous transcripts. This is particularly interesting, as endogenous RNAs could harbor important information about the cell type, disease state, and environmental challenges cells are facing. Single-guide RNA (sgRNA) engineering played a major role in the development of RNA-responsive CRISPR systems. Following further optimizations, RNA-responsive sgRNAs could enable the development of novel therapeutic and research applications. This review introduces engineering strategies that could be employed to modify Streptococcus pyogenes sgRNAs with a focus on recent advances made toward the development of RNA-responsive sgRNAs. Future directions and potential applications of these technologies are also discussed.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Pequeno RNA não Traduzido , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA , Streptococcus pyogenes/genética , Pequeno RNA não Traduzido/genética
3.
NPJ Precis Oncol ; 6(1): 19, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361874

RESUMO

Immunotherapies have recently gained traction as highly effective therapies in a subset of late-stage cancers. Unfortunately, only a minority of patients experience the remarkable benefits of immunotherapies, whilst others fail to respond or even come to harm through immune-related adverse events. For immunotherapies within the PD-1/PD-L1 inhibitor class, patient stratification is currently performed using tumor (tissue-based) PD-L1 expression. However, PD-L1 is an accurate predictor of response in only ~30% of cases. There is pressing need for more accurate biomarkers for immunotherapy response prediction. We sought to identify peripheral blood biomarkers, predictive of response to immunotherapies against lung cancer, based on whole blood microRNA profiling. Using three well-characterized cohorts consisting of a total of 334 stage IV NSCLC patients, we have defined a 5 microRNA risk score (miRisk) that is predictive of overall survival following immunotherapy in training and independent validation (HR 2.40, 95% CI 1.37-4.19; P < 0.01) cohorts. We have traced the signature to a myeloid origin and performed miRNA target prediction to make a direct mechanistic link to the PD-L1 signaling pathway and PD-L1 itself. The miRisk score offers a potential blood-based companion diagnostic for immunotherapy that outperforms tissue-based PD-L1 staining.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...