Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 6(4): 1070-1084, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28205414

RESUMO

Human placenta is rich in mesenchymal stem/stromal cells (MSC), with their origin widely presumed fetal. Cultured placental MSCs are confounded by a high frequency of maternal cell contamination. Our recent systematic review concluded that only a small minority of placental MSC publications report fetal/maternal origin, and failed to discern a specific methodology for isolation of fetal MSC from term villi. We determined isolation conditions to yield fetal and separately maternal MSC during ex vivo expansion from human term placenta. MSCs were isolated via a range of methods in combination; selection from various chorionic regions, different commercial media, mononuclear cell digest and/or explant culture. Fetal and maternal cell identities were quantitated in gender-discordant pregnancies by XY chromosome fluorescence in situ hybridization. We first demonstrated reproducible maternal cell contamination in MSC cultures from all chorionic anatomical locations tested. Cultures in standard media rapidly became composed entirely of maternal cells despite isolation from fetal villi. To isolate pure fetal cells, we validated a novel isolation procedure comprising focal dissection from the cotyledonary core, collagenase/dispase digestion and explant culture in endothelial growth media that selected, and provided a proliferative environment, for fetal MSC. Comparison of MSC populations within the same placenta confirmed fetal to be smaller, more osteogenic and proliferative than maternal MSC. We conclude that in standard media, fetal chorionic villi-derived MSC (CV-MSC) do not grow readily, whereas maternal MSC proliferate to result in maternal overgrowth during culture. Instead, fetal CV-MSCs require isolation under specific conditions, which has implications for clinical trials using placental MSC. Stem Cells Translational Medicine 2017;6:1070-1084.


Assuntos
Vilosidades Coriônicas , Células-Tronco Fetais/citologia , Células-Tronco Mesenquimais/citologia , Placenta/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Humanos , Gravidez
2.
J Vis Exp ; (112)2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27340821

RESUMO

Mesenchymal stem/stromal cells (MSC) are promising candidates for use in cell-based therapies. In most cases, therapeutic response appears to be cell-dose dependent. Human term placenta is rich in MSC and is a physically large tissue that is generally discarded following birth. Placenta is an ideal starting material for the large-scale manufacture of multiple cell doses of allogeneic MSC. The placenta is a fetomaternal organ from which either fetal or maternal tissue can be isolated. This article describes the placental anatomy and procedure to dissect apart the decidua (maternal), chorionic villi (fetal), and chorionic plate (fetal) tissue. The protocol then outlines how to isolate MSC from each dissected tissue region, and provides representative analysis of expanded MSC derived from the respective tissue types. These methods are intended for pre-clinical MSC isolation, but have also been adapted for clinical manufacture of placental MSC for human therapeutic use.


Assuntos
Células-Tronco Mesenquimais , Placenta , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Feminino , Feto , Humanos , Gravidez
3.
Endocrine ; 49(3): 643-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26067082

RESUMO

Analysis of archival samples from cohorts of pregnant women may be key to discovering prognosticators of stillbirth and pregnancy/perinatal complications. Growth hormone (GH) and its receptor (GHR) are pivotal in feto-placental development and pregnancy maintenance. We report a rapid, optimized method for genotyping the GHR full-length versus exon 3-deleted isoform (GHRd3). TaqMan single nucleotide polymorphism (SNP) genotyping proved superior to standard multiplex polymerase chain reaction (PCR) in allele detection and GHR genotyping from archived samples, including those with poor genomic deoxyribonucleic acid quality/quantity such as formalin fixed, paraffin embedded, blood, and serum. Furthermore, this assay is suitable for high through put 96 or 384-well plate quantitative PCR machines with automated genotype calling software. The TaqMan genotyping assay can increase the data obtained from precious archival human samples.


Assuntos
Proteínas de Transporte/genética , Placenta/química , Adulto , Austrália/epidemiologia , Células Cultivadas , Estudos de Coortes , Éxons , Feminino , Sangue Fetal/química , Deleção de Genes , Frequência do Gene , Genótipo , Humanos , Desequilíbrio de Ligação , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Fixação de Tecidos
4.
BMC Cell Biol ; 15: 15, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24885150

RESUMO

BACKGROUND: Fetal mesenchymal stem/stromal cells (MSC) represent a developmentally-advantageous cell type with translational potential.To enhance adult MSC migration, studies have focussed on the role of the chemokine receptor CXCR4 and its ligand SDF-1 (CXCL12), but more recent work implicates an intricate system of CXCR4 receptor dimerization, intracellular localization, multiple ligands, splice variants and nuclear accumulation. We investigated the intracellular localization of CXCR4 in fetal bone marrow-derived MSC and role of intracellular trafficking in CXCR4 surface expression and function. RESULTS: We found that up to 4% of human fetal MSC have detectable surface-localized CXCR4. In the majority of cells, CXCR4 is located not at the cell surface, as would be required for 'sensing' migratory cues, but intracellularly. CXCR4 was identified in early endosomes, recycling endosomes, and lysosomes, indicating only a small percentage of CXCR4 travelling to the plasma membrane. Notably CXCR4 was also found in and around the nucleus, as detected with an anti-CXCR4 antibody directed specifically against CXCR4 isoform 2 differing only in N-terminal sequence. After demonstrating that endocytosis of CXCR4 is largely independent of endogenously-produced SDF-1, we next applied the cytoskeletal inhibitors blebbistatin and dynasore to inhibit endocytotic recycling. These increased the number of cells expressing surface CXCR4 by 10 and 5 fold respectively, and enhanced the number of cells migrating to SDF1 in vitro (up to 2.6 fold). These molecules had a transient effect on cell morphology and adhesion, which abated after the removal of the inhibitors, and did not alter functional stem cell properties. CONCLUSIONS: We conclude that constitutive endocytosis is implicated in the regulation of CXCR4 membrane expression, and suggest a novel pharmacological strategy to enhance migration of systemically-transplanted cells.


Assuntos
Endocitose , Feto/citologia , Células-Tronco Mesenquimais/citologia , Receptores CXCR4/análise , Receptores CXCR4/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Movimento Celular , Núcleo Celular/metabolismo , Células Cultivadas , Endossomos/metabolismo , Feminino , Humanos , Lisossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transporte Proteico
5.
Science ; 344(6185): 1249783, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24833397

RESUMO

Signaling from JAK (Janus kinase) protein kinases to STAT (signal transducers and activators of transcription) transcription factors is key to many aspects of biology and medicine, yet the mechanism by which cytokine receptors initiate signaling is enigmatic. We present a complete mechanistic model for activation of receptor-bound JAK2, based on an archetypal cytokine receptor, the growth hormone receptor. For this, we used fluorescence resonance energy transfer to monitor positioning of the JAK2 binding motif in the receptor dimer, substitution of the receptor extracellular domains with Jun zippers to control the position of its transmembrane (TM) helices, atomistic modeling of TM helix movements, and docking of the crystal structures of the JAK2 kinase and its inhibitory pseudokinase domain with an opposing kinase-pseudokinase domain pair. Activation of the receptor dimer induced a separation of its JAK2 binding motifs, driven by a ligand-induced transition from a parallel TM helix pair to a left-handed crossover arrangement. This separation leads to removal of the pseudokinase domain from the kinase domain of the partner JAK2 and pairing of the two kinase domains, facilitating trans-activation. This model may well generalize to other class I cytokine receptors.


Assuntos
Janus Quinase 2/metabolismo , Receptores da Somatotropina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Cisteína/química , Ativação Enzimática , Células HEK293 , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores da Somatotropina/química , Receptores da Somatotropina/genética
6.
Genom Data ; 2: 382-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26484134

RESUMO

Early fetal and placental MSCs have translationally-advantageous characteristics compared to later pregnancy MSCs. During the first trimester, the fetus and placenta grow rapidly with divergent developmental requirements, but studies comparing mesenchymal stem cells (MSCs) from different origins have paid little attention to the effect of gestational age over this temporal window. Here we present the transcriptome through first trimester development of MSC isolated from fetal bone marrow (BM) or placental structures. Samples were collected weekly from 8 to 12 weeks. The raw microarray data are available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-TABM-1224. Additionally, the data have been integrated into the stem cell collaboration platform www.Stemformatics.org. These data provide a valuable resource for developmental biology and stem cell investigation.

7.
Stem Cells Transl Med ; 1(2): 83-95, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23197756

RESUMO

The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques, such as coculture, physical manipulation, sorting, or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First, epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor-ß pathway inhibitor SB431542. After 10 days, iPSCs showed upregulation of mesodermal genes (MSX2, NCAM, HOXA2) and downregulation of pluripotency genes (OCT4, LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes, reflecting epithelial-to-mesenchymal transition. Both ESC- and iPSC-derived MSCs exhibited a typical MSC immunophenotype, expressed high levels of vimentin and N-cadherin, and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs, whereas adipogenic differentiation was limited, as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture, providing a robust, clinically applicable, and efficient system for generating MSCs from human iPSCs.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Antígenos CD/genética , Antígenos CD/metabolismo , Benzamidas/farmacologia , Biomarcadores/metabolismo , Caderinas/genética , Caderinas/metabolismo , Proliferação de Células , Forma Celular , Células Cultivadas , Meios de Cultura Livres de Soro , Dioxóis/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunofenotipagem , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Medicina Regenerativa/métodos , Fatores de Tempo , Vimentina/genética , Vimentina/metabolismo
8.
Stem Cell Res ; 8(1): 58-73, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22099021

RESUMO

Cells resembling bone marrow mesenchymal stem cells (MSC) have been isolated from many organs but their functional relationships have not been thoroughly examined. Here we compared the immunophenotype, gene expression, multipotency and immunosuppressive potential of MSC-like colony-forming cells from adult murine bone marrow (bmMSC), kidney (kCFU-F) and heart (cCFU-F), cultured under uniform conditions. All populations showed classic MSC morphology and in vitro mesodermal multipotency. Of the two solid organ-specific CFU-F, only kCFU-F displayed suppression of T-cell alloreactivity in vitro, albeit to a lesser extent than bmMSC. Quantitative immunophenotyping using 81 phycoerythrin-conjugated CD antibodies demonstrated that all populations contained high percentages of cells expressing diagnostic MSC surface markers (Sca1, CD90.2, CD29, CD44), as well as others noted previously on murine MSC (CD24, CD49e, CD51, CD80, CD81, CD105). Illumina microarray expression profiling and bioinformatic analysis indicated a correlation of gene expression of 0.88-0.92 between pairwise comparisons. All populations expressed approximately 66% of genes in the pluripotency network (Plurinet), presumably reflecting their stem-like character. Furthermore, all populations expressed genes involved in immunomodulation, homing and tissue repair, suggesting these as conserved functions for MSC-like cells in solid organs. Despite this molecular congruence, strong biases in gene and protein expression and pathway activity were seen, suggesting organ-specific functions. Hence, tissue-derived MSC may also retain unique properties potentially rendering them more appropriate as cellular therapeutic agents for their organ of origin.


Assuntos
Células da Medula Óssea/citologia , Imunofenotipagem/métodos , Rim/citologia , Células-Tronco Mesenquimais/citologia , Miocárdio/citologia , Transcriptoma/genética , Animais , Células da Medula Óssea/metabolismo , Forma Celular , Ensaio de Unidades Formadoras de Colônias , Epitopos/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Terapia de Imunossupressão , Células-Tronco Mesenquimais/metabolismo , Camundongos , Especificidade de Órgãos/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Expert Rev Endocrinol Metab ; 1(2): 189-198, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30754141

RESUMO

Growth hormone (GH) is a major regulator of postnatal growth and metabolism. There are extensive clinical applications for GH or its antagonists, including treatments for dwarfism, cancer and metabolic wasting. Owing to this, there is considerable interest in the mechanisms of GH receptor (GHR) activation. It is conventionally thought that GH induces dimerization of two GHR monomers, which initiates intracellular signaling cascades. However, recent studies have provided evidence for a ligand-induced conformational change within constitutively dimerized GHRs being responsible for activating signaling pathways. This review will relate the new model of GHR activation to the activation of related cytokine receptors and discuss the implication of this new model for the design of small GH mimetics and antagonists for therapeutic use.

10.
Nat Struct Mol Biol ; 12(9): 814-21, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16116438

RESUMO

Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.


Assuntos
Modelos Biológicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores da Somatotropina/química , Receptores da Somatotropina/metabolismo , Rotação , Sequência de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Cristalografia por Raios X , Dimerização , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Subunidades Proteicas/genética , Receptores da Somatotropina/genética , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...