Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(24): 10208-10214, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34870431

RESUMO

We demonstrate a high-quality spin-orbit torque nano-oscillator comprised of spin wave modes confined by the magnetic field by the strongly inhomogeneous dipole field of a nearby micromagnet. This approach enables variable spatial confinement and systematic tuning of magnon spectrum and spectral separations for studying the impact of multimode interactions on auto-oscillations. We find these dipole-field-localized spin wave modes exhibit good characteristic properties as auto-oscillators─narrow line width and large amplitude─while persisting up to room temperature. We find that the line width of the lowest-lying localized mode is approximately proportional to temperature in good agreement with theoretical analysis of the impact of thermal fluctuations. This demonstration of a clean oscillator with tunable properties provides a powerful tool for understanding the fundamental limitations and line width contributions to improve future spin-Hall oscillators.

2.
Nat Commun ; 11(1): 5229, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067420

RESUMO

Development of sensitive local probes of magnon dynamics is essential to further understand the physical processes that govern magnon generation, propagation, scattering, and relaxation. Quantum spin sensors like the NV center in diamond have long spin lifetimes and their relaxation can be used to sense magnetic field noise at gigahertz frequencies. Thus far, NV sensing of ferromagnetic dynamics has been constrained to the case where the NV spin is resonant with a magnon mode in the sample meaning that the NV frequency provides an upper bound to detection. In this work we demonstrate ensemble NV detection of spinwaves generated via a nonlinear instability process where spinwaves of nonzero wavevector are parametrically driven by a high amplitude microwave field. NV relaxation caused by these driven spinwaves can be divided into two regimes; one- and multi-magnon NV relaxometry. In the one-magnon NV relaxometry regime the driven spinwave frequency is below the NV frequencies. The driven spinwave undergoes four-magnon scattering resulting in an increase in the population of magnons which are frequency matched to the NVs. The dipole magnetic fields of the NV-resonant magnons couple to and relax nearby NV spins. The amplitude of the NV relaxation increases with the wavevector of the driven spinwave mode which we are able to vary up to 3 × 106 m-1, well into the part of the spinwave spectrum dominated by the exchange interaction. Increasing the strength of the applied magnetic field brings all spinwave modes to higher frequencies than the NV frequencies. We find that the NVs are relaxed by the driven spinwave instability despite the absence of any individual NV-resonant magnons, suggesting that multiple magnons participate in creating magnetic field noise below the ferromagnetic gap frequency which causes NV spin relaxation.

3.
Nano Lett ; 20(10): 7257-7262, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32955896

RESUMO

Nonlocal spin transport using lateral structures is attractive for spintronic devices. Typically, a spin current is generated by a ferromagnetic (FM) or a heavy metal (HM) electrode in a nonlocal structure, which can be detected by another FM or HM electrode. Here, we report a new nonlocal spin injection scheme using uniform-mode ferromagnetic resonance (FMR) spin pumping in Pt/Y3Fe5O12 (YIG) lateral structures. This scheme is enabled by well-separated resonant fields of Pt/YIG and bare YIG due to substantial change of anisotropy in YIG films induced by a Pt overlayer, allowing for clearly distinguishable local and nonlocal spin pumping. Our results show that the spin decay length of nonlocal uniform-mode spin pumping in 20 nm YIG films is 2.1 µm at room temperature.

4.
Phys Rev Lett ; 113(17): 176601, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25379927

RESUMO

We observe a dependence of the damping of a confined mode of precessing ferromagnetic magnetization on the size of the mode. The micron-scale mode is created within an extended, unpatterned yttrium iron garnet film by means of the intense local dipolar field of a micromagnetic tip. We find that the damping of the confined mode scales like the surface-to-volume ratio of the mode, indicating an interfacial damping effect (similar to spin pumping) due to the transfer of angular momentum from the confined mode to the spin sink of ferromagnetic material in the surrounding film. Though unexpected for insulating systems, the measured intralayer spin-mixing conductance g_↑↓=5.3×10(19) m(-2) demonstrates efficient intralayer angular momentum transfer.

5.
Nat Nanotechnol ; 9(5): 343-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24658171

RESUMO

Spintronics use the electron spin as a state variable for information processing and storage. This requires manipulation of spin ensembles for data encoding, and spin transport for information transfer. Because of the central importance of lifetime for understanding and controlling spins, mechanisms that determine this lifetime in bulk systems have been extensively studied. However, a clear understanding of few-spin systems remains challenging. Here, we report spatially resolved magnetic resonance studies of electron spin ensembles confined to a 'spin nanowire' formed by nitrogen ion implantation in diamond. We measure the spin lifetime of the ensemble--that is, its spin autocorrelation time--by monitoring the statistical fluctuations of its net moment, which is in thermal equilibrium and has no imposed polarization gradient. We find that the lifetime of the ensemble is dominated by spin transport from the ensemble into the adjacent spin reservoir that is provided by the remainder of the nanowire. This is in striking contrast to conventional spin-lattice relaxation measurements of isolated spin ensembles. Electron spin resonance spectroscopy performed on nanoscale spin ensembles by means of a novel spin manipulation protocol corroborates spin transport in strong field gradients. Our experiments, supported by microscopic Monte Carlo modelling, provide a unique insight into the intrinsic dynamics of pure spin currents needed for nanoscale devices that seek to control spins.

6.
Rev Sci Instrum ; 85(12): 123702, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25554296

RESUMO

Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

7.
Nature ; 466(7308): 845-8, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20703302

RESUMO

The discovery of new phenomena in layered and nanostructured magnetic devices is driving rapid growth in nanomagnetics research. Resulting applications such as giant magnetoresistive field sensors and spin torque devices are fuelling advances in information and communications technology, magnetoelectronic sensing and biomedicine. There is an urgent need for high-resolution magnetic-imaging tools capable of characterizing these complex, often buried, nanoscale structures. Conventional ferromagnetic resonance (FMR) provides quantitative information about ferromagnetic materials and interacting multicomponent magnetic structures with spectroscopic precision and can distinguish components of complex bulk samples through their distinctive spectroscopic features. However, it lacks the sensitivity to probe nanoscale volumes and has no imaging capabilities. Here we demonstrate FMR imaging through spin-wave localization. Although the strong interactions in a ferromagnet favour the excitation of extended collective modes, we show that the intense, spatially confined magnetic field of the micromagnetic probe tip used in FMR force microscopy can be used to localize the FMR mode immediately beneath the probe. We demonstrate FMR modes localized within volumes having 200 nm lateral dimensions, and improvements of the approach may allow these dimensions to be decreased to tens of nanometres. Our study shows that this approach is capable of providing the microscopic detail required for the characterization of ferromagnets used in fields ranging from spintronics to biomagnetism. This method is applicable to buried and surface magnets, and, being a resonance technique, measures local internal fields and other magnetic properties with spectroscopic precision.

8.
Small ; 4(2): 270-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18247385

RESUMO

The use of magnetic force microscopy (MFM) to detect probe-sample interactions from superparamagnetic nanoparticles in vitro in ambient atmospheric conditions is reported here. By using both magnetic and nonmagnetic probes in dynamic lift-mode imaging and by controlling the direction and magnitude of the external magnetic field applied to the samples, it is possible to detect and identify the presence of superparamagnetic nanoparticles. The experimental results shown here are in agreement with the estimated sensitivity of the MFM technique. The potential and challenges for localizing nanoscale magnetic domains in biological samples is discussed.


Assuntos
Magnetismo , Nanopartículas Metálicas/química , Microscopia de Força Atômica/métodos , Óxido Ferroso-Férrico/química , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica/estatística & dados numéricos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...