RESUMO
AIM AND OBJECTIVE: The purpose of this study was to measure the refractive index of four commercially available enamel resin composites, using optical coherence tomography (OCT) and their relationship with the atomic composition of the composite resin fillers utilizing an energy-dispersive X-ray fluorescence spectrometer (EDX). MATERIALS AND METHODS: Four different enamel composites, namely Enamel HRi color UE3, Enamel HFO color GE3, Vit-l-escence color Pearl Frost, and Amelogen Plus color Enamel White were tested. For each composite, disks with different thicknesses were fabricated and then light-cured according to the manufacturer's instructions. The disks were then stored in deionized water under 36.5 °C for at least 7 days. Each of the samples from the four different groups was measured in five distinctive points to analyze the optical and physical length using optical coherence tomography (OCT). Elemental analysis of all four different enamel shades of the composite was done using an EDX. RESULTS: The filler contents showed interesting differences in elemental composition and concentration; however, Si seemed to be a common filler component. The HRi composite presented a distinctive composition compared to other materials and was the only composite that showed a smaller percentage of SiO2, and also was the only composite that contained compounds, such as P2O5, ZnO, CaO, La2O3, and V2O5. The optical coherence tomography analysis showed the refractive index values of all tested enamel composites. Among the four different enamel composite resins tested, the enamel HRi composite demonstrated the most ideal refractive index to mimic natural enamel. CONCLUSION: The enamel HRi composite demonstrated a distinctive filler composition and this could be the main reason behind its higher refractive index. Nonetheless, it remains unclear how much of an impact this feature has in the final esthetic outcome of anterior composite restorations, where many other optical phenomena are also important. CLINICAL SIGNIFICANCE: The clinical success of any esthetic restorative procedure depends on diagnosing the proper treatment plan and also on executing this treatment with the right materials. On direct esthetic restorations, knowing the optical properties of such materials is fundamental, as they should be able to replicate both natural enamel and dentin. How to cite this article: Beolchi RS, Mehta D, Pelissier B, et al. Influence of Filler Composition on the Refractive Index of Four Different Enamel Shades of Composite Resins. J Contemp Dent Pract 2021;22(5):557-561.
Assuntos
Materiais Dentários , Refratometria , Cor , Resinas Compostas , Esmalte Dentário , Estética Dentária , Teste de Materiais , Dióxido de SilícioRESUMO
The present study aimed to assess the influence of curing distance on the loss of irradiance and power density of four curing light devices. The behavior in terms of power density of four different dental curing devices was analyzed (Valo, Elipar 2, Radii-Cal, and Optilux-401) using three different distances of photopolymerization (0 mm, 4 mm, and 8 mm). All devices had their power density measured using a MARC simulator. Ten measurements were made per device at each distance. The total amount of energy delivered and the required curing time to achieve 16 J/cm(2) of energy was also calculated. Data were statistically analyzed with one-way analysis of variance and Tukey's tests (p < 0.05). The curing distance significantly interfered with the loss of power density for all curing light devices, with the farthest distance generating the lowest power density and consequently the longer time to achieve an energy density of 16 J/cm(2) (p < 0.01). Comparison of devices showed that Valo, in extra power mode, showed the best results at all distances, followed by Valo in high power mode, Valo in standard mode, Elipar 2, Radii-Cal, and Optilux-401 halogen lamp (p < 0.01). These findings indicate that all curing lights induced a significant loss of irradiance and total energy when the light was emitted farther from the probe. The Valo device in extra power mode showed the highest power density and the shortest time to achieve an energy density of 16 J/cm(2) at all curing distances.
Assuntos
Resinas Compostas/efeitos da radiação , Lâmpadas de Polimerização Dentária , Cura Luminosa de Adesivos Dentários/instrumentação , Cura Luminosa de Adesivos Dentários/métodos , Análise de Variância , Resinas Compostas/química , Equipamentos Odontológicos , Teste de Materiais , Polimerização/efeitos da radiação , Doses de Radiação , Equipamentos e Provisões para Radiação , Valores de Referência , Reprodutibilidade dos Testes , Estatísticas não Paramétricas , Fatores de TempoRESUMO
The present study aimed to assess the influence of curing distance on the loss of irradiance and power density of four curing light devices. The behavior in terms of power density of four different dental curing devices was analyzed (Valo, Elipar 2, Radii-Cal, and Optilux-401) using three different distances of photopolymerization (0 mm, 4 mm, and 8 mm). All devices had their power density measured using a MARC simulator. Ten measurements were made per device at each distance. The total amount of energy delivered and the required curing time to achieve 16 J/cm2 of energy was also calculated. Data were statistically analyzed with one-way analysis of variance and Tukey’s tests (p < 0.05). The curing distance significantly interfered with the loss of power density for all curing light devices, with the farthest distance generating the lowest power density and consequently the longer time to achieve an energy density of 16 J/cm2 (p < 0.01). Comparison of devices showed that Valo, in extra power mode, showed the best results at all distances, followed by Valo in high power mode, Valo in standard mode, Elipar 2, Radii-Cal, and Optilux-401 halogen lamp (p < 0.01). These findings indicate that all curing lights induced a significant loss of irradiance and total energy when the light was emitted farther from the probe. The Valo device in extra power mode showed the highest power density and the shortest time to achieve an energy density of 16 J/cm2 at all curing distances.