Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 108(3-1): 034409, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849208

RESUMO

We introduce a minimal model of multilevel selection on structured populations, considering the interplay between game theory and population dynamics. Through a bottleneck process, finite groups are formed with cooperators and defectors sampled from an infinite pool. After the fragmentation, these transient compartments grow until the maximal number of individuals per compartment is attained. Eventually, all compartments are merged and well mixed, and the whole process is repeated. We show that cooperators, even if interacting only through mean-field intragroup interactions that favor defectors, may perform well because of the intergroup competition and the size diversity among the compartments. These cycles of isolation and coalescence may therefore be important in maintaining diversity among different species or strategies and may help to understand the underlying mechanisms of the scaffolding processes in the transition to multicellularity.


Assuntos
Comportamento Cooperativo , Teoria dos Jogos , Humanos , Dinâmica Populacional , Evolução Biológica
2.
Phys Rev E ; 107(5-1): 054113, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329001

RESUMO

By using trajectory averaging to analyze the statistics of energy dissipation in the nonequilibrium energy-state transitions of a driven two-state system, we show that the average energy dissipation induced by external driving is connected to its fluctuations about equilibrium through the simple relation 2k_{B}T〈Q〉=〈δQ^{2}〉, which is preserved by an adiabatic approximation scheme. We use this scheme to obtain the heat statistics of a single-electron box with a superconducting lead in the slow-driving regime, where the dissipated heat becomes normally distributed with a relatively high probability to be extracted from the environment rather than dissipated. We also discuss the validity of heat fluctuation relations beyond driven two-state transitions and the slow-driving regime.


Assuntos
Elétrons , Temperatura Alta
3.
Phys Rev E ; 106(1-1): 014137, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974646

RESUMO

The same system can exhibit a completely different dynamical behavior when it evolves in equilibrium conditions or when it is driven out-of-equilibrium by, e.g., connecting some of its components to heat baths kept at different temperatures. Here we concentrate on an analytically solvable and experimentally relevant model of such a system-the so-called Brownian gyrator-a two-dimensional nanomachine that performs a systematic, on average, rotation around the origin under nonequilibrium conditions, while no net rotation takes place under equilibrium ones. On this example, we discuss a question whether it is possible to distinguish between two types of a behavior judging not upon the statistical properties of the trajectories of components but rather upon their respective spectral densities. The latter are widely used to characterize diverse dynamical systems and are routinely calculated from the data using standard built-in packages. From such a perspective, we inquire whether the power spectral densities possess some "fingerprint" properties specific to the behavior in nonequilibrium. We show that indeed one can conclusively distinguish between equilibrium and nonequilibrium dynamics by analyzing the cross-correlations between the spectral densities of both components in the short frequency limit, or from the spectral densities of both components evaluated at zero frequency. Our analytical predictions, corroborated by experimental and numerical results, open a new direction for the analysis of a nonequilibrium dynamics.

4.
J Theor Biol ; 487: 110110, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31837985

RESUMO

Can prelife proceed without cell division? A recently proposed mechanism suggests that transient compartmentalization could have preceded cell division in prebiotic scenarios. Here, we study transient compartmentalization dynamics in the presence of mutations and noise in replication, as both can be detrimental the survival of compartments. Our study comprises situations where compartments contain uncoupled autocatalytic reactions feeding on a common resource, and systems based on RNA molecules copied by replicases, following a recent experimental study. Using the theory of branching processes, we show analytically that two regimes are possible. In the diffusion-limited regime, replication is asynchronous which leads to a large variability in the composition of compartments. In contrast, in a replication-limited regime, the growth is synchronous and thus the compositional variability is low. Typically, simple autocatalysts are in the former regime, while polymeric replicators can access the latter. For deterministic growth dynamics, we introduce mutations that turn functional replicators into parasites. We derive the phase boundary separating coexistence or parasite dominance as a function of relative growth, inoculation size and mutation rate. We show that transient compartmentalization allows coexistence beyond the classical error threshold, above which the parasite dominates. Our findings invite to revisit major prebiotic transitions, notably the transitions towards cooperation, complex polymers and cell division.


Assuntos
Taxa de Mutação , Difusão , Mutação
5.
Life (Basel) ; 9(4)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623412

RESUMO

The problem of the emergence and survival of self-replicating molecules in origin-of-life scenarios is plagued by the error catastrophe, which is usually escaped by considering effects of compartmentalization, as in the stochastic corrector model. By addressing the problem in a simple system composed of a self-replicating molecule (a replicase) and a parasite molecule that needs the replicase for copying itself, we show that transient (rather than permanent) compartmentalization is sufficient to the task. We also exhibit a regime in which the concentrations of the two kinds of molecules undergo sustained oscillations. Our model should be relevant not only for origin-of-life scenarios but also for describing directed evolution experiments, which increasingly rely on transient compartmentalization with pooling and natural selection.

6.
Phys Rev Lett ; 120(15): 158101, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29756893

RESUMO

Transient compartments have been recently shown to be able to maintain functional replicators in the context of prebiotic studies. Here, we show that a broad class of selection dynamics is able to achieve this goal. We identify two key parameters, the relative amplification of nonactive replicators (parasites) and the size of compartments. These parameters account for competition and diversity, and the results are relevant to similar multilevel selection problems, such as those found in virus-host ecology and trait group selection.


Assuntos
Modelos Genéticos , RNA Catalítico/genética , RNA/genética , RNA/metabolismo , RNA Catalítico/metabolismo
8.
PLoS Comput Biol ; 8(3): e1002447, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479175

RESUMO

Many theoretical and experimental studies suggest that range expansions can have severe consequences for the gene pool of the expanding population. Due to strongly enhanced genetic drift at the advancing frontier, neutral and weakly deleterious mutations can reach large frequencies in the newly colonized regions, as if they were surfing the front of the range expansion. These findings raise the question of how frequently beneficial mutations successfully surf at shifting range margins, thereby promoting adaptation towards a range-expansion phenotype. Here, we use individual-based simulations to study the surfing statistics of recurrent beneficial mutations on wave-like range expansions in linear habitats. We show that the rate of surfing depends on two strongly antagonistic factors, the probability of surfing given the spatial location of a novel mutation and the rate of occurrence of mutations at that location. The surfing probability strongly increases towards the tip of the wave. Novel mutations are unlikely to surf unless they enjoy a spatial head start compared to the bulk of the population. The needed head start is shown to be proportional to the inverse fitness of the mutant type, and only weakly dependent on the carrying capacity. The precise location dependence of surfing probabilities is derived from the non-extinction probability of a branching process within a moving field of growth rates. The second factor is the mutation occurrence which strongly decreases towards the tip of the wave. Thus, most successful mutations arise at an intermediate position in the front of the wave. We present an analytic theory for the tradeoff between these factors that allows to predict how frequently substitutions by beneficial mutations occur at invasion fronts. We find that small amounts of genetic drift increase the fixation rate of beneficial mutations at the advancing front, and thus could be important for adaptation during species invasions.


Assuntos
Evolução Biológica , Ecossistema , Emigração e Imigração , Genética Populacional , Modelos Genéticos , Mutação/genética , Seleção Genética/genética , Simulação por Computador
9.
Phys Rev Lett ; 101(9): 098903; author reply 098904, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18851667
10.
Phys Rev Lett ; 96(12): 120603, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16605889

RESUMO

We introduce a numerical procedure to evaluate directly the probabilities of large deviations of physical quantities, such as current or density, that are local in time. The large-deviation functions are given in terms of the typical properties of a modified dynamics, and since they no longer involve rare events, can be evaluated efficiently and over a wider ranges of values. We illustrate the method with the current fluctuations of the Totally Asymmetric Exclusion Process and with the work distribution of a driven Lorentz gas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA