Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Invest ; 96(12): 1327-1336, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27775692

RESUMO

Tissue image analysis (tIA) is emerging as a powerful tool for quantifying biomarker expression and distribution in complex diseases and tissues. Pancreatic ductal adenocarcinoma (PDAC) develops in a highly complex and heterogeneous tissue environment and, generally, has a very poor prognosis. Early detection of PDAC is confounded by limited knowledge of the pre-neoplastic disease stages and limited methods to quantitatively assess disease heterogeneity. We sought to develop a tIA approach to assess the most common PDAC precursor lesions, pancreatic intraepithelial neoplasia (PanIN), in tissues from KrasLSL-G12D/+; Trp53LSL-R172H/+; Pdx-Cre (KPC) mice, a validated model of PDAC development. tIA profiling of training regions of PanIN and tumor microenvironment (TME) cells was utilized to guide identification of PanIN/TME tissue compartment stratification criteria. A custom CellMap algorithm implementing these criteria was applied to whole-slide images of KPC mice pancreata sections to quantify p53 and Ki-67 biomarker staining in each tissue compartment as a proof-of-concept for the algorithm platform. The algorithm robustly identified a higher percentage of p53-positive cells in PanIN lesions relative to the TME, whereas no difference was observed for Ki-67. Ki-67 expression was also quantified in a human pancreatic tissue sample available to demonstrate the translatability of the CellMap algorithm to human samples. Together, our data demonstrated the utility of CellMap to enable objective and quantitative assessments, across entire tissue sections, of PDAC precursor lesions in preclinical and clinical models of this disease to support efforts leading to novel insights into disease progression, diagnostic markers, and potential therapeutic targets.


Assuntos
Adenocarcinoma in Situ/diagnóstico , Carcinoma Ductal Pancreático/diagnóstico , Pâncreas/patologia , Neoplasias Pancreáticas/diagnóstico , Lesões Pré-Cancerosas/diagnóstico , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma in Situ/diagnóstico por imagem , Adenocarcinoma in Situ/metabolismo , Adenocarcinoma in Situ/patologia , Algoritmos , Animais , Automação Laboratorial , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Cruzamentos Genéticos , Modelos Animais de Doenças , Detecção Precoce de Câncer/métodos , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Camundongos Mutantes , Camundongos Transgênicos , Pâncreas/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/diagnóstico por imagem , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Software , Organismos Livres de Patógenos Específicos , Bancos de Tecidos , Ultrassonografia
2.
Nat Neurosci ; 16(9): 1191-1198, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23955559

RESUMO

Hox genes controlling motor neuron subtype identity are expressed in rostrocaudal patterns that are spatially and temporally collinear with their chromosomal organization. Here we demonstrate that Hox chromatin is subdivided into discrete domains that are controlled by rostrocaudal patterning signals that trigger rapid, domain-wide clearance of repressive histone H3 Lys27 trimethylation (H3K27me3) polycomb modifications. Treatment of differentiating mouse neural progenitors with retinoic acid leads to activation and binding of retinoic acid receptors (RARs) to the Hox1-Hox5 chromatin domains, which is followed by a rapid domain-wide removal of H3K27me3 and acquisition of cervical spinal identity. Wnt and fibroblast growth factor (FGF) signals induce expression of the Cdx2 transcription factor that binds and clears H3K27me3 from the Hox1-Hox9 chromatin domains, leading to specification of brachial or thoracic spinal identity. We propose that rapid clearance of repressive modifications in response to transient patterning signals encodes global rostrocaudal neural identity and that maintenance of these chromatin domains ensures the transmission of positional identity to postmitotic motor neurons later in development.


Assuntos
Padronização Corporal/genética , Cromatina/metabolismo , Genes Homeobox/fisiologia , Neurônios Motores/metabolismo , Transdução de Sinais/genética , Animais , Encéfalo/citologia , Fator de Transcrição CDX2 , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Cromatina/genética , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Neurônios Motores/efeitos dos fármacos , Mucoproteínas/genética , Células-Tronco Neurais/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia
3.
J Neurosci ; 32(4): 1496-506, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22279234

RESUMO

Formation of functional motor circuits relies on the ability of distinct spinal motor neuron subtypes to project their axons with high precision to appropriate muscle targets. While guidance cues contributing to motor axon pathfinding have been identified, the intracellular pathways underlying subtype-specific responses to these cues remain poorly understood. In particular, it remains controversial whether responses to axon guidance cues depend on axonal protein synthesis. Using a growth cone collapse assay, we demonstrate that mouse embryonic stem cell-derived spinal motor neurons (ES-MNs) respond to ephrin-A5, Sema3f, and Sema3a in a concentration-dependent manner. At low doses, ES-MNs exhibit segmental or subtype-specific responses, while this selectivity is lost at higher concentrations. Response to high doses of semaphorins and to all doses of ephrin-A5 is protein synthesis independent. In contrast, using microfluidic devices and stripe assays, we show that growth cone collapse and guidance at low concentrations of semaphorins rely on local protein synthesis in the axonal compartment. Similar bimodal response to low and high concentrations of guidance cues is observed in human ES-MNs, pointing to a general mechanism by which neurons increase their repertoire of responses to the limited set of guidance cues involved in neural circuit formation.


Assuntos
Axônios/fisiologia , Sinais (Psicologia) , Neurônios Motores/fisiologia , Biossíntese de Proteínas/fisiologia , Animais , Axônios/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Efrina-A5/administração & dosagem , Efrina-A5/fisiologia , Cones de Crescimento/patologia , Cones de Crescimento/fisiologia , Humanos , Masculino , Proteínas de Membrana/administração & dosagem , Proteínas de Membrana/fisiologia , Camundongos , Neurônios Motores/classificação , Proteínas do Tecido Nervoso/administração & dosagem , Proteínas do Tecido Nervoso/fisiologia , Semaforina-3A , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Medula Espinal/fisiologia
4.
Curr Opin Neurobiol ; 21(1): 43-51, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20970319

RESUMO

Richness of neural circuits and specificity of neuronal connectivity depend on the diversification of nerve cells into functionally and molecularly distinct subtypes. Although efficient methods for directed differentiation of embryonic stem cells (ESCs) into multiple principal neuronal classes have been established, only a few studies systematically examined the subtype diversity of in vitro derived nerve cells. Here we review evidence based on molecular and in vivo transplantation studies that ESC-derived spinal motor neurons and cortical layer V pyramidal neurons acquire subtype specific functional properties. We discuss similarities and differences in the role of cell-intrinsic transcriptional programs, extrinsic signals and cell-cell interactions during subtype diversification of the two classes of nerve cells. We conclude that the high degree of fidelity with which differentiating ESCs recapitulate normal embryonic development provides a unique opportunity to explore developmental processes underlying specification of mammalian neuronal diversity in a simplified and experimentally accessible system.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Animais , Encéfalo/citologia , Humanos , Medula Espinal/citologia
5.
Cell Stem Cell ; 7(3): 355-66, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20804971

RESUMO

Cultured ESCs can form different classes of neurons, but whether these neurons can acquire specialized subtype features typical of neurons in vivo remains unclear. We show here that mouse ESCs can be directed to form highly specific motor neuron subtypes in the absence of added factors, through a differentiation program that relies on endogenous Wnts, FGFs, and Hh-mimicking the normal program of motor neuron subtype differentiation. Molecular markers that characterize motor neuron subtypes anticipate the functional properties of these neurons in vivo: ESC-derived motor neurons grafted isochronically into chick spinal cord settle in appropriate columnar domains and select axonal trajectories with a fidelity that matches that of their in vivo generated counterparts. ESC-derived motor neurons can therefore be programmed in a predictive manner to acquire molecular and functional properties that characterize one of the many dozens of specialized motor neuron subtypes that exist in vivo.


Assuntos
Transplante de Células , Células-Tronco Embrionárias/citologia , Neurônios Motores/transplante , Medula Espinal/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Reprogramação Celular/efeitos dos fármacos , Camundongos , Neurônios Motores/citologia
6.
Methods Mol Biol ; 482: 171-83, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19089356

RESUMO

A growing number of specific cell types have been successfully derived from embryonic stem cells (ES cells), including a variety of neural cells. In vitro generated cells need to be extensively characterized to establish functional equivalency with their in vivo counterparts. The ultimate test for the ability of ES cell-derived neurons to functionally integrate into neural networks is transplantation into the developing central nervous system, a challenging technique limited by the poor accessibility of mammalian embryos. Here we describe xenotransplantation of mouse embryonic stem cell-derived motor neurons into the developing chick neural tube as an alternative for testing the ability of in vitro generated neurons to survive, integrate, extend axons, and form appropriate synaptic contacts with functionally relevant targets in vivo. Similar methods can be adapted to study functionality of other mammalian cells, including derivatives of human ES cells.


Assuntos
Células-Tronco Embrionárias/citologia , Neurônios Motores/transplante , Medula Espinal/citologia , Medula Espinal/embriologia , Transplante de Células-Tronco/métodos , Transplante Heterólogo/métodos , Animais , Diferenciação Celular , Células Cultivadas , Galinhas , Camundongos , Tubo Neural/citologia
7.
Curr Protoc Stem Cell Biol ; Chapter 1: Unit 1H.1.1-1H.1.9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18770634

RESUMO

Controlled differentiation of embryonic stem (ES) cells into clinically relevant cell types is a fundamental goal of stem cell research. This unit describes one of the most efficient protocols for conversion of mouse ES cells into a defined type of nerve cells, the spinal motor neurons. ES cells are separated from feeder mouse embryonic fibroblasts and aggregated to form embryoid bodies (EBs). Two days after the withdrawal of growth factors, EBs reach a stage at which they are responsive to patterning signals and can be effectively induced with retinoic acid (RA) to differentiate into spinal nerve cells. Nascent neural cells become responsive to the ventralizing signal sonic hedgehog (Hh) that controls expression of ventral spinal progenitor markers and initiates the genetic program of motor neuron differentiation.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Neurônios Motores/citologia , Medula Espinal/citologia , Animais , Anticorpos , Crioultramicrotomia , Camundongos , Fatores de Tempo , Fixação de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...