Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
PLoS One ; 19(9): e0304849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39288111

RESUMO

INTRODUCTION: Influenza (Flu) causes considerable morbidity and mortality globally, and in Bhutan, Flu viruses are a leading cause of acute respiratory infection and cause outbreaks during Flu seasons. In this study, we aim to analyze the epidemiology and the genetic characterization of Flu viruses circulated in Bhutan in 2022. METHOD: Respiratory specimens were collected from patients who meet the case definition for influenza-like illness (ILI) and severe acute respiratory infection (SARI) from sentinel sites. Specimens were tested for Flu and SARS-CoV-2 viruses by RT-PCR using the Multiplex Assay. Selected positive specimens were utilized for Flu viral genome sequencing by next-generation sequencing. Descriptive analysis was performed on patient demographics to see the proportion of Flu-associated ILI and SARI. All data were analyzed using Epi Info7 and QGIS 3.16 software. RESULT: A weekly average of 16.2 ILI cases per 1000 outpatient visits and 18 SARI cases per 1000 admitted cases were reported in 2022. The median age among ILI was 12 years (IQR: 5-28) and SARI was 6.2 (IQR: 2.5-15) years. Flu A(H3N2) (70.2%) subtype was the most predominant circulating strain. Flu A(H1N1)pdm09 and Flu B viruses belonged to subclades that were mismatched to the vaccine strains recommended for the 2021-2022 season but matched the vaccine strain for the 2022-2023 season with vaccine efficacy 85.14% and 88.07% respectively. Flu A(H3N2) virus belonged to two subclades which differed from the vaccine strains recommended in both the 2021-2022 and 2022-2023 seasons with vaccine efficacy 68.28%. CONCLUSION: Flu virus positivity rates were substantially elevated during the Flu season in 2022 compared to 2021. Flu A(H3N2) subtype was the most predominant circulating strain in the country and globally. Genetic characterization of the Flu viruses in Bhutan showed a close relatedness of high vaccine efficacy with the vaccine strain that WHO recommended for the 2022-23 season.


Assuntos
Influenza Humana , Humanos , Butão/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Criança , Adulto , Masculino , Feminino , Adolescente , Pré-Escolar , Pessoa de Meia-Idade , Adulto Jovem , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Estações do Ano , Idoso , Lactente , COVID-19/epidemiologia , COVID-19/virologia , Filogenia
2.
Osong Public Health Res Perspect ; 14(6): 494-507, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38204428

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic, caused by a dynamic virus, has had a profound global impact. Despite declining global COVID-19 cases and mortality rates, the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains a major concern. This study provides a comprehensive analysis of the genomic sequences of SARS-CoV-2 within the Bhutanese population during the pandemic. The primary aim was to elucidate the molecular epidemiology and evolutionary patterns of SARS-CoV-2 in Bhutan, with a particular focus on genetic variations and lineage dynamics. METHODS: Whole-genome sequences of SARS-CoV-2 collected from Bhutan between May 2020 and February 2023 (n=135) were retrieved from the Global Initiative on Sharing All Influenza Database. RESULTS: The SARS-CoV-2 variants in Bhutan were predominantly classified within the Nextstrain clade 20A (31.1%), followed by clade 21L (20%) and clade 22D (15.6%). We identified 26 Pangolin lineages with variations in their spatial and temporal distribution. Bayesian time-scaled phylogenetic analysis estimated the time to the most recent common ancestor as February 15, 2020, with a substitution rate of 0.97×10-3 substitutions per site per year. Notably, the spike glycoprotein displayed the highest mutation frequency among major viral proteins, with 116 distinct mutations, including D614G. The Bhutanese isolates also featured mutations such as E484K, K417N, and S477N in the spike protein, which have implications for altered viral properties. CONCLUSION: This is the first study to describe the genetic diversity of SARS-CoV-2 circulating in Bhutan during the pandemic, and this data can inform public health policies and strategies for preventing future outbreaks in Bhutan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA