Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(12): e51856, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23272180

RESUMO

BACKGROUND: Several psychophysical experiments found evidence for the involvement of gaze-centered and/or body-centered coordinates in arm-movement planning and execution. Here we aimed at investigating the frames of reference involved in the visuomotor transformations for reaching towards visual targets in space by taking target eccentricity and performing hand into account. METHODOLOGY/PRINCIPAL FINDINGS: We examined several performance measures while subjects reached, in complete darkness, memorized targets situated at different locations relative to the gaze and/or to the body, thus distinguishing between an eye-centered and a body-centered frame of reference involved in the computation of the movement vector. The errors seem to be mainly affected by the visual hemifield of the target, independently from its location relative to the body, with an overestimation error in the horizontal reaching dimension (retinal exaggeration effect). The use of several target locations within the perifoveal visual field allowed us to reveal a novel finding, that is, a positive linear correlation between horizontal overestimation errors and target retinal eccentricity. In addition, we found an independent influence of the performing hand on the visuomotor transformation process, with each hand misreaching towards the ipsilateral side. CONCLUSIONS: While supporting the existence of an internal mechanism of target-effector integration in multiple frames of reference, the present data, especially the linear overshoot at small target eccentricities, clearly indicate the primary role of gaze-centered coding of target location in the visuomotor transformation for reaching.


Assuntos
Braço , Movimento , Desempenho Psicomotor , Percepção Visual , Adulto , Análise de Variância , Feminino , Humanos , Masculino , Estimulação Luminosa , Campos Visuais , Adulto Jovem
2.
Eur J Neurosci ; 34(11): 1871-85, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22017280

RESUMO

In the monkey posterior parietal cortex (PPC), there is clear evidence of anatomically segregated neuronal populations specialized for planning saccades and arm-reaching movements. However, functional neuroimaging studies in humans have yielded controversial results. Here we show that the human PPC contains distinct subregions responsive to salient visual cues, some of which combine spatial and action-related signals into 'intentional' signals. Participants underwent event-related functional magnetic resonance imaging while performing delayed saccades and long-range arm reaches instructed by visual cues. We focused on activity in the time period following the cue and preceding the actual movement. The use of individual cortical surface reconstructions with detailed sulcal labeling allowed the definition of six responsive regions with distinctive anatomical locations in the PPC. Each region exhibited a distinctive combination of transient and sustained signals during the delay, modulated by either the cue spatial location (contralateral vs. ipsilateral), the instructed action (saccades vs. reaching) or both. Importantly, a lateral and a medial dorsal parietal region showed sustained responses during the delay preferentially for contralateral saccadic and reaching trials, respectively. In the lateral region, preference for saccades was evident only as a more sustained response during saccadic vs. reaching delays, whereas the medial region also showed a higher transient response to cues signaling reaching vs. saccadic actions. These response profiles closely match the behavior of neurons in the macaque lateral and medial intraparietal area, respectively, and suggest that these corresponding human regions are encoding spatially directed action plans or 'intentions'.


Assuntos
Movimento/fisiologia , Lobo Parietal/anatomia & histologia , Lobo Parietal/fisiologia , Movimentos Sacádicos , Adulto , Animais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Desempenho Psicomotor/fisiologia , Adulto Jovem
3.
Exp Brain Res ; 206(2): 109-20, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20186405

RESUMO

We review human functional neuroimaging studies that have explicitly investigated the reference frames used in different cortical regions for representing spatial locations of objects. Beyond the general distinction between "egocentric" and "allocentric" reference frames, we provide evidence for the selective involvement of the posterior parietal cortex and associated frontal regions in the specific process of egocentric localization of visual and somatosensory stimuli with respect to relevant body parts ("body referencing"). Similarly, parahippocampal and retrosplenial regions, together with specific parietal subregions such as the precuneus, are selectively involved in a specific form of allocentric representation in which object locations are encoded relative to enduring spatial features of a familiar environment ("environmental referencing"). We also present a novel functional magnetic resonance imaging study showing that these regions are selectively activated, whenever a purely perceptual spatial task involves an object which maintains a stable location in space during the whole experiment, irrespective of its perceptual features and its orienting value as a landmark. This effect can be dissociated from the consequences of an explicit memory recall of landmark locations, a process that further engages the retrosplenial cortex.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Memória/fisiologia , Percepção Espacial/fisiologia , Adulto , Animais , Encéfalo/anatomia & histologia , Encéfalo/irrigação sanguínea , Dominância Cerebral/fisiologia , Meio Ambiente , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Oxigênio/sangue , Valores de Referência , Adulto Jovem
4.
Brain ; 130(Pt 2): 431-41, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17008330

RESUMO

Human awareness of left space may be disrupted by cerebral lesions to the right hemisphere (hemispatial neglect). Current knowledge on the anatomical bases of this complex syndrome is based on the results of group studies that investigated primarily the best known aspect of the syndrome, which is visual neglect for near extrapersonal (or peripersonal) space. However, another component-neglect for personal space-is more often associated with, than double-dissociated from, extrapersonal neglect, especially, in chronic patients. The present investigation aimed at exploring the anatomical substrate of both extrapersonal and personal neglect by using different advanced methodological approaches to lesion-function correlation. Fifty-two right ischaemic patients were submitted to neuropsychological assessment and in-depth MRI evaluation. The borders of each patient's lesion were delimited onto its own high-resolution anatomical image and then submitted to an automated spatial normalization algorithm. Besides conventional lesion density plots and subtraction analysis, region-based statistical analyses were performed on percentage values of the lesioned tissue also using a new parcellation of the white matter (WM). Data were finally submitted to voxelwise statistical analysis using a recently proposed method (voxel-based lesion-symptom mapping). Results converged in showing that awareness of extrapersonal space is based on the integrity of a circuit of right frontal (ventral premotor cortex and middle frontal gyrus) and superior temporal regions, whereas awareness of personal space is rooted in right inferior parietal regions (supramarginal gyrus, post-central gyrus and especially the WM medial to them). Common but less crucial regions for both neglect sub-types were located in the temporo-peri-Sylvian cortex. We suggest that extrapersonal space awareness critically involves a ventral circuit recently described for the exogenous allocation and reorienting of attention in space. Disruption of personal space awareness, instead, seems to be due to a functional disconnection between regions important for coding proprioceptive and somatosensory inputs, and regions coding more abstract egocentric representations of the body in space. In conclusion, present data strongly support a segregation of personal and extrapersonal spatial awareness in humans, both from a functional and an anatomical point of view.


Assuntos
Transtornos da Percepção/etiologia , Espaço Pessoal , Percepção Espacial , Acidente Vascular Cerebral/psicologia , Adulto , Idoso , Conscientização , Encéfalo/patologia , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Transtornos da Percepção/patologia , Transtornos da Percepção/fisiopatologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA