Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Ther Pat ; 34(6): 475-491, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578180

RESUMO

INTRODUCTION: Bacterial Membrane Vesicles (MVs) play important roles in cell-to-cell communication and transport of several molecules. Such structures are essential components of Extracellular Polymeric Substances (EPS) biofilm matrix of many bacterial species displaying a structural function and a role in virulence and pathogenesis. AREAS COVERED: In this review were included original articles from the last ten years by searching the keywords 'biofilm' and 'vesicles' on PUBMED and Scopus databases. The articles available in literature mainly describe a positive correlation between bacterial MVs and biofilms formation. The research on Espacenet and Google Patent databases underlines the available patents related to the application of both biofilm MVs and planktonic MVs in inhibiting biofilm formation. EXPERT OPINION: This review covers and analyzes recent advances in the study of the relationship between bacterial vesicles and biofilm. The huge number of papers discussing the role of MVs confirms the interest aimed at developing new applications in the medical field. The study of the MVs composition and biogenesis may contribute to the identification of components which could be (i) the target for the development of new drugs inhibiting the biofilm establishment; (ii) candidates for the development of vaccines; (iii) biomarkers for the diagnosis of bacterial infections.


Assuntos
Antibacterianos , Bactérias , Infecções Bacterianas , Biofilmes , Patentes como Assunto , Biofilmes/efeitos dos fármacos , Humanos , Infecções Bacterianas/microbiologia , Infecções Bacterianas/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Vesículas Extracelulares/metabolismo , Desenvolvimento de Medicamentos , Virulência
2.
Sci Rep ; 14(1): 759, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191588

RESUMO

In recent years, there has been a considerable increasing interest in the use of the greater wax moth Galleria mellonella as an animal model. In vivo pharmacological tests, concerning the efficacy and the toxicity of novel compounds are typically performed in mammalian models. However, the use of the latter is costly, laborious and requires ethical approval. In this context, G. mellonella larvae can be considered a valid option due to their greater ease of use and the absence of ethical rules. Furthermore, it has been demonstrated that the immune system of these invertebrates has similarity with the one of mammals, thus guaranteeing the reliability of this in vivo model, mainly in the microbiological field. To better develop the full potential of this model, we present a novel approach to characterize the hemocyte population from G. mellonella larvae and to highlight the immuno modulation upon infection and treatments. Our approach is based on the detection in isolated hemocytes from G. mellonella hemolymph of cell membrane markers typically expressed by human immune cells upon inflammation and infection, for instance CD14, CD44, CD80, CD163 and CD200. This method highlights the analogies between G. mellonella larvae and humans. Furthermore, we provide an innovative tool to perform pre-clinical evaluations of the efficacy of antimicrobial compounds in vivo to further proceed with clinical trials and support drug discovery campaigns.


Assuntos
Hemócitos , Mariposas , Animais , Humanos , Larva , Avaliação Pré-Clínica de Medicamentos , Imunofenotipagem , Reprodutibilidade dos Testes , Mamíferos
3.
Membranes (Basel) ; 13(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37999346

RESUMO

Outer membrane vesicles (OMVs) are spherical, lipid-based nano-structures, which are released by Gram-negative bacteria in both in vitro and in vivo conditions. The size and composition of OMVs depend on not only the producer bacterial species but also cells belonging to the same strain. The mechanism of vesicles' biogenesis has a key role in determining their cargo and the pattern of macromolecules exposed on their surface. Thus, the content of proteins, lipids, nucleic acids, and other biomolecules defines the properties of OMVs and their beneficial or harmful effects on human health. Many studies have provided evidence that OMVs can be involved in a plethora of biological processes, including cell-to-cell communication and bacteria-host interactions. Moreover, there is a growing body of literature supporting their role in horizontal gene transfer (HGT). During this process, OMVs can facilitate the spreading of genes involved in metabolic pathways, virulence, and antibiotic resistance, guaranteeing bacterial proliferation and survival. For this reason, a deeper understanding of this new mechanism of genetic transfer could improve the development of more efficient strategies to counteract infections sustained by Gram-negative bacteria. In line with this, the main aim of this mini-review is to summarize the latest evidence concerning the involvement of OMVs in HGT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...