Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 13(1): 12, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996247

RESUMO

Hippocampal GABAergic interneurons play key roles in regulating principal cell activity and plasticity. Interneurons located in stratum oriens/alveus (O/A INs) receive excitatory inputs from CA1 pyramidal cells and express a Hebbian form of long-term potentiation (LTP) at their excitatory input synapses. This LTP requires the activation of metabotropic glutamate receptors 1a (mGluR1a) and Ca2+ entry via transient receptor potential (TRP) channels. However, the type of TRP channels involved in synaptic transmission at these synapses remains largely unknown. Using patch-clamp recordings, we show that slow excitatory postsynaptic currents (EPSCs) evoked in O/A INs are dependent on TRP channels but may be independent of phospholipase C. Using reverse transcription polymerase chain reaction (RT-PCR) we found that mRNA for TRPC 1, 3-7 was present in CA1 hippocampus. Using single-cell RT-PCR, we found expression of mRNA for TRPC 1, 4-7, but not TRPC3, in O/A INs. Using co-immunoprecipitation assays in HEK-293 cell expression system, we found that TRPC1 and TRPC4 interacted with mGluR1a. Co-immunoprecipitation in hippocampus showed that TRPC1 interacted with mGluR1a. Using immunofluorescence, we found that TRPC1 co-localized with mGluR1a in O/A IN dendrites, whereas TRPC4 localization appeared limited to O/A IN cell body. Down-regulation of TRPC1, but not TRPC4, expression in O/A INs using small interfering RNAs prevented slow EPSCs, suggesting that TRPC1 is an obligatory TRPC subunit for these EPSCs. Our findings uncover a functional role of TRPC1 in mGluR1a-mediated slow excitatory synaptic transmission onto O/A INs that could be involved in Hebbian LTP at these synapses.


Assuntos
Região CA1 Hipocampal/citologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Interneurônios/fisiologia , Potenciação de Longa Duração/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Transmissão Sináptica/fisiologia , Canais de Cátion TRPC/fisiologia , Animais , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Biolística , Genes Reporter , Células HEK293 , Humanos , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Reação em Cadeia da Polimerase Multiplex , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Transfecção
2.
Epilepsia ; 51(8): 1607-18, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20698876

RESUMO

PURPOSE: Specific inhibitory interneurons in area CA1 of the hippocampus, notably those located in stratum oriens-alveus (O/A-INs), are selectively vulnerable in patients and animal models of temporal lobe epilepsy (TLE). The excitotoxic mechanisms underlying the selective vulnerability of interneurons have not been identified but could involve group I metabotropic glutamate receptor subtypes (mGluR1/5), which have generally proconvulsive actions and activate prominent cationic currents and calcium responses specifically in O/A-INs. METHODS: In this study, we examine the role of mGluR1/5 in interneurons during epileptiform activity using whole-cell recordings from CA1 O/A-INs and selective antagonists of mGluR1α (LY367385) and mGluR5 (MPEP) in a disinhibited rat hippocampal slice model of epileptiform activity. RESULTS: Our data indicate more prominent epileptiform burst discharges and paroxysmal depolarizations (PDs) in O/A-INs than in interneurons located at the border of strata radiatum and lacunosum/moleculare (R/LM-INs). In addition, mGluR1 and mGluR5 significantly contributed to epileptiform responses in O/A-INs but not in R/LM-INs. Epileptiform burst discharges in O/A-INs were partly dependent on mGluR5. PDs and associated postsynaptic currents were dependent on both mGluR1α and mGluR5. These receptors contributed differently to postsynaptic currents underlying PDs, with mGluR5 contributing to the fast and slow components and mGluR1α to the slow component. DISCUSSION: These findings support interneuron subtype-specific activation and differential contributions of mGluR1α and mGluR5 to epileptiform activity in O/A-INs, which could be important for their selective vulnerability in TLE.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/citologia , Interneurônios/classificação , Interneurônios/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Interações Medicamentosas , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inibidores
3.
J Physiol ; 588(Pt 12): 2091-107, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20403974

RESUMO

Hebbian long-term potentiation (LTP) develops at specific synapses onto hippocampal CA1 oriens/alveus interneurons (OA-INs), suggesting selective regulation of distinct input pathways. Afferent-specific properties at interneuron synapses have been characterized extensively in CA3 stratum lucidum cells, but given interneuron diversity these rules of transmission and plasticity may not hold in other interneuron types. Here, we used paired recordings and demonstrate that CA2/3 pyramidal cell (PC) feedforward and CA1 PC feedback synapses onto OA-INs show distinct AMPA receptor rectification and Ca(2+) permeability, short-term plasticity and mGluR2/3-mediated inhibition. Only feedback synapses undergo Hebbian LTP. OA-IN firing during repeated synaptic stimulation displays onset-transient or late-persistent responses consistent with activation of feedforward and feedback inputs, respectively. Input-output functions are preserved after theta-burst stimulation, but late-persistent responses selectively show mGluR1-dependent long-term increases. Thus, cell type- and afferent-specific rules of transmission and plasticity underlie distinct OA-IN input-output functions, providing selective long-term regulation in feedback inhibitory networks.


Assuntos
Região CA1 Hipocampal/fisiologia , Interneurônios/fisiologia , Inibição Neural , Plasticidade Neuronal , Neurônios Aferentes/fisiologia , Transmissão Sináptica , Potenciais de Ação , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Região CA2 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Cálcio/metabolismo , Retroalimentação Fisiológica , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Potenciação de Longa Duração , Inibição Neural/efeitos dos fármacos , Vias Neurais/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Neurotransmissores/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo
4.
J Neurosci ; 29(14): 4658-63, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19357290

RESUMO

Activity-dependent regulation of synaptic inputs in neurons is controlled by highly compartmentalized and dynamic dendritic calcium signaling. Among multiple Ca(2+) mechanisms operating in neuronal dendrites, voltage-sensitive Ca(2+) channels (VSCCs) represent a major source of Ca(2+) influx; however, their use-dependent implication, regulation, and function in different types of central neurons remain widely unknown. Using two-photon microscopy to probe Ca(2+) signaling in dendrites of hippocampal oriens/alveus interneurons, we found that intense synaptic activity or local activation of mGluR5 induced long-lasting potentiation of action potential evoked Ca(2+) transients. This potentiation of dendritic Ca(2+) signaling required mGluR5-induced intracellular Ca(2+) release and PKC activation and was expressed as a selective compartmentalized potentiation of L-type VSCCs. Thus, in addition to mGluR1a-dependent synaptic plasticity, hippocampal interneurons in the feedback inhibitory circuit demonstrate a novel form of mGluR5-induced dendritic plasticity. Given an implication of L-type VSCCs in the induction of Hebbian LTP at interneuron excitatory synapses, their activity-dependent regulation may represent a powerful mechanism for regulating synaptic plasticity.


Assuntos
Sinalização do Cálcio/fisiologia , Dendritos/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Potenciais Sinápticos/fisiologia , Animais , Plasticidade Neuronal/fisiologia , Ratos , Ratos Sprague-Dawley
5.
Prog Brain Res ; 169: 241-50, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18394478

RESUMO

Recent studies clearly indicate that long-term synaptic plasticity in hippocampal networks not only takes place at excitatory synapses of hippocampal granule and pyramidal cells, but also at excitatory synapses onto inhibitory interneurons. Various forms of long-term potentiation (LTP) and depression (LTD) have now been reported at glutamatergic synapses of interneurons in dentate gyrus (DG), CA3, and CA1 regions of the hippocampus. Importantly, the presence and type of these changes in synaptic efficacy appear to depend on the interneuron subtype, including its specific role within the hippocampal network. The data reviewed here suggest the existence of cell-type specific rules for synaptic plasticity in hippocampal feed-forward and feedback inhibitory networks. This specialized tuning of inhibition is likely important for global hippocampal function.


Assuntos
Retroalimentação/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Hipocampo/citologia , Neurônios/classificação , Neurônios/fisiologia
6.
J Neurophysiol ; 96(6): 3257-65, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17110739

RESUMO

This study tested whether firing rate and spike shape could be used to distinguish projection cells from interneurons in extracellular recordings of basolateral amygdala (BLA) neurons. To this end, we recorded BLA neurons in isoflurane-anesthetized animals with tungsten microelectrodes. Projection cells were identified by antidromic activation from cortical projection sites of the BLA. Although most projection cells fired spontaneously at low rates (<1 Hz), an important subset fired at higher rates (up to 6.8 Hz). In fact, the distribution of firing rates in projection cells and unidentified BLA neurons overlapped extensively, even though the latter cell group presumably contains a higher proportion of interneurons. The only difference between the two distributions was a small subset (5.1%) of unidentified neurons with unusually high firing rates (9-16 Hz). Similarly, distributions of spike durations in both cell groups were indistinguishable, although most of the fast-firing neurons had spike durations at the low end of the distribution. However, we observed that spike durations depended on the exact position of the electrode with respect to the recorded cell, varying by as much as 0.7 ms. Thus neither firing rate nor spike waveform allowed for unequivocal separation of projection cells from interneurons. Nevertheless, we propose the use of two firing rate cutoffs to obtain relatively pure samples of projection cells and interneurons: < or =1 Hz for projection cells and > or =7 Hz for fast-spiking interneurons. Supplemented with spike-duration cutoffs of > or =0.7 ms for projection cells and < or =0.5 ms for interneurons, this approach should keep instances of misclassifications to a minimum.


Assuntos
Tonsila do Cerebelo/fisiologia , Interneurônios/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Tonsila do Cerebelo/citologia , Animais , Gatos , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Estimulação Elétrica , Eletrofisiologia , Espaço Extracelular/fisiologia , Masculino , Microeletrodos , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/fisiologia
7.
Nat Neurosci ; 9(10): 1321-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16964249

RESUMO

Emotions generally facilitate memory, an effect mediated by the basolateral amygdala (BLA). To study the underlying mechanisms, we recorded BLA, perirhinal and entorhinal neurons during an appetitive trace-conditioning task. We focused on the rhinal cortices because they constitute the interface between the hippocampus, a mediator of memory consolidation, and the neocortex, the storage site of declarative memories. We found that, after unexpected rewards, BLA activity increased impulse transmission from perirhinal to entorhinal neurons and that this effect decayed as the association between conditioned stimuli and rewards was learned. At this late phase of learning, the BLA effect occurred when the animals were anticipating the reward. By enhancing the processing of sensory cues, the BLA-mediated facilitation of rhinal interactions may explain how the amygdala promotes memory formation in emotional conditions.


Assuntos
Tonsila do Cerebelo/fisiologia , Emoções , Córtex Entorrinal/fisiologia , Memória/fisiologia , Vias Neurais/fisiologia , Potenciais de Ação/fisiologia , Tonsila do Cerebelo/citologia , Animais , Comportamento Animal , Mapeamento Encefálico , Gatos , Condicionamento Clássico/fisiologia , Córtex Entorrinal/citologia , Neurônios/fisiologia , Análise Numérica Assistida por Computador , Probabilidade , Tempo de Reação , Recompensa
8.
J Neurophysiol ; 94(3): 1837-48, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16105956

RESUMO

The rhinal cortices play a critical role in high-order perceptual/mnemonic functions and constitute the main route for impulse traffic to and from the hippocampus. However, previous work has revealed that neocortical stimuli that activate a large proportion of perirhinal neurons are unable to discharge entorhinal cells. In search of mechanisms that might facilitate impulse transfer from the neocortex to the entorhinal cortex, we have examined changes in excitability produced by activation of the lateral amygdala (LA) in isoflurane-anesthetized animals. LA stimulation activated a large proportion of peri- and entorhinal neurons. However, conditioning LA stimuli did not increase the ability of neocortical inputs to activate entorhinal cells even though such pairing produced marked increases in neocortically evoked field potentials and orthodromic firing in the perirhinal cortex. Moreover, increased neocortically evoked perirhinal field potentials and unit responses persisted when the conditioning LA shock was replaced by another neocortical stimulus at the same or at a different site as the testing shock. This perirhinal paired-pulse facilitation (PPF) was maximal with interstimulus intervals of approximately 100 ms. Intracellular recordings of perirhinal neurons revealed that the PPF was generally associated with a rapid shift in the balance between inhibition and excitation, leading to an overall increase in perirhinal responsiveness. The significance of these findings for the role of the perirhinal cortex is discussed.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Entorrinal/citologia , Neocórtex/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Tonsila do Cerebelo/efeitos da radiação , Animais , Mapeamento Encefálico , Gatos , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Masculino , Neocórtex/efeitos da radiação , Inibição Neural/fisiologia , Inibição Neural/efeitos da radiação , Vias Neurais/efeitos da radiação , Neurônios/classificação , Neurônios/efeitos da radiação , Tempo de Reação/fisiologia , Tempo de Reação/efeitos da radiação , Fatores de Tempo
9.
J Neurosci ; 25(32): 7429-37, 2005 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16093394

RESUMO

Accumulating evidence indicates that phobic and posttraumatic anxiety disorders likely result from a failure to extinguish fear memories. Extinction normally depends on a new learning that competes with the original fear memory and is driven by medial prefrontal cortex (mPFC) projections to the amygdala. Although mPFC stimulation was reported to inhibit the central medial (CEm) amygdala neurons that mediate fear responses via their brainstem and hypothalamic projections, it is unclear how this inhibition is generated. Because the mPFC has very sparse projections to CEm output neurons, the mPFC-evoked inhibition of the CEm is likely indirect. Thus, this study tested whether it resulted from a feedforward inhibition of basolateral amygdala (BLA) neurons that normally relay sensory inputs to the CEm. However, our results indicate that mPFC inputs excite rather than inhibit BLA neurons, implying that the inhibition of CEm cells is mediated by an active gating mechanism downstream of the BLA.


Assuntos
Tonsila do Cerebelo/fisiologia , Inibição Neural/fisiologia , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/citologia , Animais , Axônios/fisiologia , Gatos , Condicionamento Psicológico , Estimulação Elétrica , Eletrofisiologia , Extinção Psicológica/fisiologia , Medo , Interneurônios/fisiologia , Condução Nervosa , Neurônios/fisiologia , Neurônios Aferentes/fisiologia , Córtex Pré-Frontal/citologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Fatores de Tempo
10.
J Neurophysiol ; 94(4): 2805-21, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16014785

RESUMO

The activation of the electroencephalogram (EEG) is paralleled with an increase in the firing rate of cortical neurons, but little is known concerning the conductance state of their membrane and its impact on their integrative properties. Here, we combined in vivo intracellular recordings with computational models to investigate EEG-activated states induced by stimulation of the brain stem ascending arousal system. Electrical stimulation of the pedonculopontine tegmental (PPT) nucleus produced long-lasting (approximately 20 s) periods of desynchronized EEG activity similar to the EEG of awake animals. Intracellularly, PPT stimulation locked the membrane into a depolarized state, similar to the up-states seen during deep anesthesia. During these EEG-activated states, however, the input resistance was higher than that during up-states. Conductance measurements were performed using different methods, which all indicate that EEG-activated states were associated with a synaptic activity dominated by inhibitory conductances. These results were confirmed by computational models of reconstructed pyramidal neurons constrained by the corresponding intracellular recordings. These models indicate that, during EEG-activated states, neocortical neurons are in a high-conductance state consistent with a stochastic integrative mode. The amplitude and timing of somatic excitatory postsynaptic potentials were nearly independent of the position of the synapses in dendrites, suggesting that EEG-activated states are compatible with coding paradigms involving the precise timing of synaptic events.


Assuntos
Estimulação Elétrica , Eletroencefalografia/efeitos da radiação , Neocórtex/citologia , Neurônios/efeitos da radiação , Transmissão Sináptica/efeitos da radiação , Animais , Gatos , Relação Dose-Resposta à Radiação , Condutividade Elétrica , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Modelos Neurológicos , Inibição Neural/fisiologia , Inibição Neural/efeitos da radiação , Distribuição Normal , Potássio/metabolismo , Análise Espectral/métodos , Fatores de Tempo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido gama-Aminobutírico/metabolismo
11.
Learn Mem ; 12(2): 96-102, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15805308

RESUMO

Manipulations that reduce or enhance the activity of basolateral amygdala (BLA) neurons in the minutes to hours after training have been shown to respectively impair or facilitate retention on the inhibitory avoidance task. Although this suggests that BLA activity is altered after emotional arousal, such changes have not been directly demonstrated. To test this, we devised a feline analog of the inhibitory avoidance task and recorded BLA unit activity before and after a single inescapable footshock. Single-unit recordings revealed that the firing rate of many BLA neurons gradually increased after the footshock, peaking 30-50 min post-shock and then subsiding to baseline levels 2 h later. During this period of increased activity, the discharges of simultaneously recorded BLA cells were more synchronized than before the shock. Although it was known that pairing innocuous (conditioned stimulus, CS) and noxious stimuli modifies the responsiveness of BLA neurons to the CS, our results constitute the first demonstration that emotional arousal produces lasting increases in the spontaneous firing rates of BLA neurons. We propose that these changes in BLA activity may promote Hebbian interactions between coincident but spatially distributed activity patterns in BLA targets, facilitating the consolidation of emotional memories.


Assuntos
Tonsila do Cerebelo/fisiologia , Nível de Alerta/fisiologia , Emoções/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Tonsila do Cerebelo/citologia , Animais , Aprendizagem por Associação/fisiologia , Aprendizagem da Esquiva/fisiologia , Gatos , Condicionamento Clássico/fisiologia , Eletrofisiologia , Fatores de Tempo
12.
J Neurophysiol ; 91(5): 2079-89, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15069098

RESUMO

One model of episodic memory posits that during slow-wave sleep (SWS), the synchronized discharges of hippocampal neurons in relation to sharp waves "replay" activity patterns that occurred during the waking state, facilitating synaptic plasticity in the neocortex. Although evidence of replay was found in the hippocampus in relation to sharp waves, it was never shown that this activity reached the neocortex. Instead, it was assumed that the rhinal cortices faithfully transmit information from the hippocampus to the neocortex and reciprocally. Here, we tested this idea using 3 different approaches. 1) Stimulating electrodes were inserted in the entorhinal cortex and temporal neocortex and evoked unit responses were recorded in between them, in the intervening rhinal cortices. In these conditions, impulse transfer occurred with an extremely low probability, in both directions. 2) To rule out the possibility that this unreliable transmission resulted from the artificial nature of electrical stimuli, crosscorrelation analyses of spontaneous neocortical, perirhinal, and entorhinal firing were performed in unanesthetized animals during the states of waking and SWS. Again, little evidence of propagation could be obtained in either state. 3) To test the idea that propagation occurs only when large groups of neurons are activated within a narrow time window, we computed perievent histograms of neocortical, perirhinal, and entorhinal neuronal discharges around large-amplitude sharp waves. However, these synchronized entorhinal discharges also failed to propagate across the perirhinal cortex. These findings suggest that the rhinal cortices are more than a relay between the neocortex and hippocampus, but rather a gate whose properties remain to be identified.


Assuntos
Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Neocórtex/fisiologia , Sono/fisiologia , Transmissão Sináptica/fisiologia , Animais , Gatos , Estimulação Elétrica , Eletrodos Implantados , Eletroencefalografia , Eletromiografia , Eletroculografia , Eletrofisiologia , Espaço Extracelular/fisiologia , Rede Nervosa/fisiologia , Sono REM/fisiologia
13.
Biol Psychiatry ; 55(6): 559-62, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15013823

RESUMO

Much evidence indicates that emotional arousal generally improves memory and that the amygdala is responsible for this effect. The available data suggest that stress hormones and neuromodulators released in emotionally arousing conditions alter the activity of basolateral amygdala (BLA) neurons in the hours after the learning episode. In turn, these changes would facilitate synaptic plasticity elsewhere in the brain; however, the biological mechanisms underlying the facilitation of memory consolidation by the BLA remain unknown. This article focuses on data suggesting that synchronized oscillatory BLA activity promotes synaptic plasticity by facilitating interactions between neocortical and temporal lobe areas involved in declarative memory.


Assuntos
Tonsila do Cerebelo/fisiologia , Emoções/fisiologia , Memória/fisiologia , Corticosteroides/fisiologia , Tonsila do Cerebelo/citologia , Animais , Nível de Alerta/fisiologia , Eletroencefalografia , Neurotransmissores/fisiologia
14.
J Neurosci ; 23(25): 8800-7, 2003 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-14507980

RESUMO

In extinction of auditory fear conditioning, rats learn that a tone no longer predicts the occurrence of a footshock. Recent lesion and unit recording studies suggest that the medial prefrontal cortex (mPFC) plays an essential role in the inhibition of conditioned fear following extinction. mPFC has robust projections to the amygdala, a structure that is known to mediate the acquisition and expression of conditioned fear. Fear conditioning potentiates the tone responses of neurons in the basolateral amygdala (BLA), which excite neurons in the central nucleus (Ce) of the amygdala. In turn, the Ce projects to the brainstem and hypothalamic areas that mediate fear responses. The present study was undertaken to test the hypothesis that the mPFC inhibits conditioned fear via feedforward inhibition of Ce output neurons. Recording extracellularly from physiologically identified brainstem-projecting Ce neurons, we tested the effect of mPFC prestimulation on Ce responsiveness to synaptic input. In support of our hypothesis, mPFC prestimulation dramatically reduced the responsiveness of Ce output neurons to inputs from the insular cortex and BLA. Thus, our findings support the idea that mPFC gates impulse transmission from the BLA to Ce, perhaps through GABAergic intercalated cells, thereby gating the expression of conditioned fear.


Assuntos
Tonsila do Cerebelo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Potenciais de Ação/fisiologia , Tonsila do Cerebelo/citologia , Animais , Tronco Encefálico/fisiologia , Gatos , Córtex Cerebral/fisiologia , Condicionamento Clássico , Estimulação Elétrica , Eletrodos Implantados , Potenciais Evocados/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Masculino , Microeletrodos , Inibição Neural/fisiologia , Ratos , Ratos Sprague-Dawley
15.
Trends Cogn Sci ; 6(7): 306-314, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12110364

RESUMO

The amygdala receives multi-modal sensory inputs and projects to virtually all levels of the central nervous system. Via these widespread projections, the amygdala facilitates consolidation of emotionally arousing memories. How the amygdala promotes synaptic plasticity elsewhere in the brain remains unknown, however. Recent work indicates that amygdala neurons show theta activity during emotional arousal, and various types of oscillations during sleep. These synchronized neuronal events could promote synaptic plasticity by facilitating interactions between neocortical storage sites and temporal lobe structures involved in declarative memory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...