Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37174278

RESUMO

Genetics plays an important role in individual differences in food liking, which influences food choices and health. Sweet food liking is a complex trait and has been associated with increased body mass index (BMI) and related comorbidities. This genome-wide association study (GWAS) aimed to investigate the genetics of sweet food liking using two adult discovery cohorts (n = 1109, n = 373) and an independent replication cohort (n = 1073). In addition, we tested the association of our strongest result on parameters related to behaviour (food adventurousness (FA) and reward dependence (RD) and health status (BMI and blood glucose). The results demonstrate a novel strong association between the Regulator of G-Protein Signalling 9 (RGS9I) gene, strongest single nucleotide polymorphism (SNP) rs58931966 (p-value 7.05 × 10-9 in the combined sample of discovery and replication), and sweet food liking, with the minor allele (A) being associated with a decreased sweet food liking. We also found that the A allele of the rs58931966 SNP was associated with decreased FA and RD, and increased BMI and blood glucose (p-values < 0.05). Differences were highlighted in sex-specific analysis on BMI and glucose. Our results highlight a novel genetic association with food liking and are indicative of genetic variation influencing the psychological-biological drivers of food preference. If confirmed in other studies, such genetic associations could allow a greater understanding of chronic disease management from both a habitual dietary intake and reward-related perspective.

2.
Eur J Hum Genet ; 29(8): 1272-1281, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33727708

RESUMO

Whole genome sequencing (WGS) allows the identification of human knockouts (HKOs), individuals in whom loss of function (LoF) variants disrupt both alleles of a given gene. HKOs are a valuable model for understanding the consequences of genes function loss. Naturally occurring biallelic LoF variants tend to be significantly enriched in "genetic isolates," making these populations specifically suited for HKO studies. In this work, a meticulous WGS data analysis combined with an in-depth phenotypic assessment of 947 individuals from three Italian genetic isolates led to the identification of ten biallelic LoF variants in ten OMIM genes associated with known autosomal recessive diseases. Notably, only a minority of the identified HKOs (C7, F12, and GPR68 genes) displayed the expected phenotype. For most of the genes, instead, (ACADSB, FANCL, GRK1, LGI4, MPO, PGAM2, and RP1L1), the carriers showed none or few of the signs and symptoms typically associated with the related diseases. Of particular interest is a case presenting with a FANCL biallelic LoF variant and a positive diepoxybutane test but lacking a full Fanconi anemia phenotypic spectrum. Identifying KO subjects displaying expected phenotypes suggests that the lack of correct genetic diagnoses may lead to inappropriate and delayed treatment. In contrast, the presence of HKOs with phenotypes deviating from the expected patterns underlines how LoF variants may be responsible for broader phenotypic spectra. Overall, these results highlight the importance of in-depth phenotypical characterization to understand the role of LoF variants and the advantage of studying these variants in genetic isolates.


Assuntos
Frequência do Gene , Doenças Genéticas Inatas/genética , Mutação com Perda de Função , População/genética , Humanos , Itália , Isolamento Reprodutivo , Sequenciamento Completo do Genoma/estatística & dados numéricos
3.
J Int Adv Otol ; 17(1): 81-83, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33605226

RESUMO

This paper aims to present a third world case of Non-Syndromic sensorineural hearing loss (NSHL) due to a novel missense variant in COL11A1 gene, defined as DFNA37 non-syndromic hearing loss. The clinical features of a 6-year-old boy affected by a bilateral moderate to severe down-sloping sensorineural hearing loss are presented, as well as the genetic analysis, the latter identifying a heterozygous missense variation in the COL11A1 gene. In addition, in families with autosomal dominant transmission, COL11A1 gene should be considered in the genetic workup of the NSHL with prelingual onset.


Assuntos
Colágeno Tipo XI/genética , Perda Auditiva , Cesárea , Criança , Feminino , Perda Auditiva/genética , Humanos , Masculino , Mutação , Gravidez
4.
Genes (Basel) ; 11(11)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105617

RESUMO

Hearing loss (HL), both syndromic (SHL) and non-syndromic (NSHL), is the most common sensory disorder, affecting ~460 million people worldwide. More than 50% of the congenital/childhood cases are attributable to genetic causes, highlighting the importance of genetic testing in this class of disorders. Here we applied a multi-step strategy for the molecular diagnosis of HL in 125 patients, which included: (1) an accurate clinical evaluation, (2) the analysis of GJB2, GJB6, and MT-RNR1 genes, (3) the evaluation STRC-CATSPER2 and OTOA deletions via Multiplex Ligation Probe Amplification (MLPA), (4) Whole Exome Sequencing (WES) in patients negative to steps 2 and 3. Our approach led to the characterization of 50% of the NSHL cases, confirming both the relevant role of the GJB2 (20% of cases) and STRC deletions (6% of cases), and the high genetic heterogeneity of NSHL. Moreover, due to the genetic findings, 4% of apparent NSHL patients have been re-diagnosed as SHL. Finally, WES characterized 86% of SHL patients, supporting the role of already know disease-genes. Overall, our approach proved to be efficient in identifying the molecular cause of HL, providing essential information for the patients' future management.


Assuntos
Surdez/diagnóstico , Surdez/genética , Técnicas de Diagnóstico Molecular , Conexina 26/genética , Conexina 30/genética , DNA Mitocondrial/genética , Surdez/patologia , Testes Genéticos , Humanos , Itália , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...