Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 35(8): e4737, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35384092

RESUMO

Prepolarized MRI (PMRI) is a long-established technique conceived to counteract the loss in signal-to-noise ratio (SNR) inherent to low-field MRI systems. When it comes to hard biological tissues and solid-state matter, PMRI is severely restricted by their ultra-short characteristic relaxation times. Here we demonstrate that efficient hard-tissue prepolarization is within reach with a special-purpose 0.26 T scanner designed for ex vivo dental MRI and equipped with suitable high-power electronics. We have characterized the performance of a 0.5 T prepolarizer module, which can be switched on and off in 200 µs. To this end, we have used resin, dental and bone samples, all with T1 times of the order of 20 ms at our field strength. The measured SNR enhancement is in good agreement with a simple theoretical model, and deviations in extreme regimes can be attributed to mechanical vibrations due to the magnetic interaction between the prepolarization and main magnets.


Assuntos
Imageamento por Ressonância Magnética , Magnetismo , Imageamento por Ressonância Magnética/métodos , Imãs , Modelos Teóricos , Razão Sinal-Ruído
2.
Int J Hyperthermia ; 39(1): 504-516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35296213

RESUMO

OBJECTIVE: Hyperthermia as an enhancer of radio- and/or chemotherapy has been confirmed by various trials. Quite a few positive randomized trials have been carried out with capacitive hyperthermia systems (CHS), even though specific absorption rates (SAR) in deep regions are known to be inferior to the established annular-phased array techniques. Due to a lack of systematic SAR measurements for current capacitive technology, we performed phantom measurements in combination with simulation studies. MATERIALS AND METHODS: According to the current guidelines, homogeneous and inhomogeneous agarose phantoms were manufactured for the commercial CHS Celsius42. Temperature/time curves were registered, and specific absorption rate (SAR) profiles and distributions were derived using the temperature gradient method. We implemented models for electrodes and phantom setups for simulation studies using Sim4Life. RESULTS: For a standard total power of 200 W, we measured effective SAR until depths of 6-8 cm in a homogeneous phantom, which indicates fair heating conditions for tumor diseases in superficial and intermediate depths. A fat layer of 1 cm strongly weakens the SAR, but 10-20 W/kg are still achieved in intermediate to deep regions (2-10 cm). In the phantom setup with integrated bone, we measured low SAR of 5-10 W/kg in the cancellous bone. Our simulations could fairly describe the measured SAR distributions, but predict tendentially higher SAR than measured. Additional simulations suggest that we would achieve higher SAR with vital fatty tissue and bone metastases in clinical situations. CONCLUSION: Capacitive systems are suitable to heat superficial and medium-deep tumors as well as some bone metastases, and CHS application is feasible for a specific class of patients with pelvic and abdominal tumors. These findings are consistent with positive clinical studies.


Assuntos
Hipertermia Induzida , Neoplasias , Simulação por Computador , Humanos , Hipertermia , Hipertermia Induzida/métodos , Neoplasias/terapia , Imagens de Fantasmas
3.
Phys Med Biol ; 67(4)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35108685

RESUMO

Objective.The goal of this work is to extend previous peripheral nerve stimulation (PNS) studies to scenarios relevant to magnetic particle imaging (MPI) and low-field magnetic resonance imaging (MRI), where field dynamics can evolve at kilo-hertz frequencies.Approach.We have constructed an apparatus for PNS threshold determination on a subject's limb, capable of narrow and broad-band magnetic stimulation with pulse characteristic times down to 40µs.Main result.From a first set of measurements on 51 volunteers, we conclude that the PNS dependence on pulse frequency/rise-time is compatible with traditional stimulation models where nervous responses are characterized by a rheobase and a chronaxie. Additionally, we have extended pulse length studies to these fast timescales and confirm thresholds increase significantly as trains transition from tens to a few pulses. We also look at the influence of field spatial distribution on PNS effects, and find that thresholds are higher in an approximately linearly inhomogeneous field (relevant to MRI) than in a rather homogeneous distribution (as in MPI).Significance.PNS constrains the clinical performance of MRI and MPI systems. Extensive magneto-stimulation studies have been carried out recently in the field of MPI, where typical operation frequencies range from single to tens of kilo-hertz. However, PNS literature is scarce for MRI in this fast regime, relevant to small (low inductance) dedicated MRI setups, and where the resonant character of MPI coils prevents studies of broad-band stimulation pulses. This work advances in this direction.


Assuntos
Diagnóstico por Imagem , Estimulação Elétrica Nervosa Transcutânea , Frequência Cardíaca , Humanos , Radiografia , Voluntários
4.
Int J Hyperthermia ; 30(2): 142-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24571177

RESUMO

PURPOSE: Magnetic resonance thermometry (MRT) is an attractive means to non-invasively monitor in vivo temperature during head and neck hyperthermia treatments because it can provide multi-dimensional temperature information with high spatial resolution over large regions of interest. However, validation of MRT measurements in a head and neck clinical set-up is crucial to ensure the temperature maps are accurate. Here we demonstrate a unique approach for temperature probe sensor localisation in head and neck hyperthermia test phantoms. METHODS: We characterise the proton resonance frequency shift temperature coefficient and validate MRT measurements in an oil-gel phantom by applying a combination of MR imaging and 3D spline fitting for accurate probe localisation. We also investigate how uncertainties in both the probe localisation and the proton resonance frequency shift (PRFS) thermal coefficient affect the registration of fibre-optic reference temperature probe and MRT readings. RESULTS: The method provides a two-fold advantage of sensor localisation and PRFS thermal coefficient calibration. We provide experimental data for two distinct head and neck phantoms showing the significance of this method as it mitigates temperature probe localisation errors and thereby increases accuracy of MRT validation results. CONCLUSIONS: The techniques presented here may be used to simplify calibration experiments that use an interstitial heating device, or any heating method that provides rapid and spatially localised heat distributions. Overall, the experimental verification of the data registration and PRFS thermal coefficient calibration technique provides a useful benchmarking method to maximise MRT accuracy in any similar context.


Assuntos
Imagens de Fantasmas , Termometria/métodos , Temperatura Corporal , Cabeça , Humanos , Espectroscopia de Ressonância Magnética , Músculos , Pescoço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...