Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 35(24): 3092-102, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-26455317

RESUMO

Oncogenic transformation in Ewing sarcoma tumors is driven by the fusion oncogene EWS-FLI1. However, despite the well-established role of EWS-FLI1 in tumor initiation, the development of models of Ewing sarcoma in human cells with defined genetic elements has been challenging. Here, we report a novel approach to model the initiation of Ewing sarcoma tumorigenesis that exploits the developmental and pluripotent potential of human embryonic stem cells. The inducible expression of EWS-FLI1 in embryoid bodies, or collections of differentiating stem cells, generates cells with properties of Ewing sarcoma tumors, including characteristics of transformation. These cell lines exhibit anchorage-independent growth, a lack of contact inhibition and a strong Ewing sarcoma gene expression signature. Furthermore, these cells also demonstrate a requirement for the persistent expression of EWS-FLI1 for cell survival and growth, which is a hallmark of Ewing sarcoma tumors.


Assuntos
Células-Tronco Embrionárias/patologia , Células-Tronco Embrionárias/fisiologia , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Carcinogênese , Diferenciação Celular/genética , Linhagem Celular Tumoral , Corpos Embrioides/patologia , Corpos Embrioides/fisiologia , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética
2.
Philos Trans R Soc Lond B Biol Sci ; 369(1650)2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25047621

RESUMO

Centrosome amplification is a hallmark of cancer. However, despite significant progress in recent years, we are still far from understanding how centrosome amplification affects tumorigenesis. Boveri's hypothesis formulated more than 100 years ago was that aneuploidy induced by centrosome amplification promoted tumorigenesis. Although the hypothesis remains appealing 100 years later, it is also clear that the role of centrosome amplification in cancer is more complex than initially thought. Here, we review how centrosome abnormalities are generated in cancer and the mechanisms cells employ to adapt to centrosome amplification, in particular centrosome clustering. We discuss the different mechanisms by which centrosome amplification could contribute to tumour progression and the new advances in the development of therapies that target cells with extra centrosomes.


Assuntos
Carcinogênese/patologia , Centrossomo/patologia , Segregação de Cromossomos/fisiologia , Modelos Biológicos , Neoplasias/fisiopatologia , Neoplasias/terapia , Transdução de Sinais/fisiologia , Polaridade Celular/fisiologia , Humanos , Microtúbulos/fisiologia , Mitose/fisiologia
3.
Curr Opin Microbiol ; 4(6): 696-702, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11731322

RESUMO

The actin and microtubule cytoskeletons play key roles in cell polarity, spindle orientation and nuclear movement. Recent work in fungal systems has identified potential "functional links" between these cytoskeletal systems. This review discusses molecular mechanisms through which these links may be established.


Assuntos
Actinas/fisiologia , Microtúbulos/fisiologia , Saccharomyces cerevisiae/fisiologia , Divisão Celular/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia
4.
J Cell Biol ; 155(2): 261-70, 2001 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11604421

RESUMO

The establishment of cell polarity in budding yeast involves assembly of actin filaments at specified cortical domains. Elucidation of the underlying mechanism requires an understanding of the machinery that controls actin polymerization and how this machinery is in turn controlled by signaling proteins that respond to polarity cues. We showed previously that the yeast orthologue of the Wiskott-Aldrich Syndrome protein, Bee1/Las17p, and the type I myosins are key regulators of cortical actin polymerization. Here, we demonstrate further that these proteins together with Vrp1p form a multivalent Arp2/3-activating complex. During cell polarization, a bifurcated signaling pathway downstream of the Rho-type GTPase Cdc42p recruits and activates this complex, leading to local assembly of actin filaments. One branch, which requires formin homologues, mediates the recruitment of the Bee1p complex to the cortical site where the activated Cdc42p resides. The other is mediated by the p21-activated kinases, which activate the motor activity of myosin-I through phosphorylation. Together, these findings provide insights into the essential processes leading to polarization of the actin cytoskeleton.


Assuntos
Actinas/metabolismo , Polaridade Celular , Proteínas do Citoesqueleto , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Leveduras/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/fisiologia , Proteína 2 Relacionada a Actina , Proteína 3 Relacionada a Actina , Citoesqueleto/metabolismo , Substâncias Macromoleculares , Proteínas dos Microfilamentos/metabolismo , Modelos Biológicos , Proteínas Motores Moleculares/metabolismo , Miosina Tipo I/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Transporte Proteico , Proteína da Síndrome de Wiskott-Aldrich
5.
Nat Cell Biol ; 3(9): E207-9, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11533673

RESUMO

Separase is a protease that cleaves the bonds between sister chromatids during cell division. Until now, separase was thought to be a somewhat repressed protease, cleaving only a few substrates in a very controlled fashion. New findings in this issue raise the possibility that separase has some of the atavistic impulses that characterize caspases, its more destructive relatives.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Cromátides/metabolismo , Endopeptidases , Saccharomyces cerevisiae/fisiologia , Schizosaccharomyces/fisiologia , Divisão Celular , Cromátides/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Separase
6.
J Cell Biol ; 154(1): 85-94, 2001 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-11448992

RESUMO

Cell cycle progression is driven by waves of cyclin expression coupled with regulated protein degradation. An essential step for initiating mitosis is the inactivation of proteolysis mediated by the anaphase-promoting complex/cyclosome (APC/C) bound to its regulator Cdh1p/Hct1p. Yeast APC(Cdh1) was proposed previously to be inactivated at Start by G1 cyclin/cyclin-dependent kinase (CDK). Here, we demonstrate that in a normal cell cycle APC(Cdh1) is inactivated in a graded manner and is not extinguished until S phase. Complete inactivation of APC(Cdh1) requires S phase cyclins. Further, persistent APC(Cdh1) activity throughout G1 helps to ensure the proper timing of Cdc20p expression. This suggests that S phase cyclins have an important role in allowing the accumulation of mitotic cyclins and further suggests a regulatory loop among S phase cyclins, APC(Cdh1), and APC(Cdc20).


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Ligases/metabolismo , Proteínas de Saccharomyces cerevisiae , Complexos Ubiquitina-Proteína Ligase , Ciclossomo-Complexo Promotor de Anáfase , Northern Blotting , Proteínas Cdc20 , Proteínas Cdh1 , Ciclo Celular , Clonagem Molecular , Ciclina B/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina , Citometria de Fluxo , Microscopia de Fluorescência , Mitose , Mutagênese Sítio-Dirigida , Mutação , Testes de Precipitina , Estrutura Terciária de Proteína , Saccharomycetales , Fatores de Tempo , Ubiquitina-Proteína Ligases
9.
J Biol Chem ; 276(19): 16279-88, 2001 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-11278922

RESUMO

Eukaryotic Rvb1p and Rvb2p are two highly conserved proteins related to the helicase subset of the AAA+ family of ATPases. Conditional mutants in both genes show rapid changes in the transcription of over 5% of yeast genes, with a similar number of genes being repressed and activated. Both Rvb1p and Rvb2p are required for maintaining the induced state of many inducible promoters. ATP binding and hydrolysis by Rvb1p and Rvb2p is individually essential in vivo, and the two proteins are associated with each other in a high molecular weight complex that shows ATP-dependent chromatin remodeling activity in vitro. Our findings show that Rvb1p and Rvb2p are essential components of a chromatin remodeling complex and determine genes regulated by the complex.


Assuntos
Adenosina Trifosfatases , Cromatina/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , RNA Helicases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Cromatina/ultraestrutura , DNA Helicases , Enzimas/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição
10.
J Cell Sci ; 114(Pt 2): 247-55, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11148127

RESUMO

Accurate distribution of the chromosomes in dividing cells requires coupling of cellular polarity cues with both the orientation of the mitotic spindle and cell cycle progression. Work in budding yeast has demonstrated that cytoplasmic dynein and the kinesin Kip3p define redundant pathways that ensure proper spindle orientation. Furthermore, it has been shown that the Kip3p pathway components Kar9p and Bim1p (Yeb1p) form a complex that provides a molecular link between cortical polarity cues and spindle microtubules. Recently, other studies indicated that the cortical localization of Kar9p depends upon actin cables and Myo2p, a type V myosin. In addition, a BUB2-dependent cell cycle checkpoint has been described that inhibits the mitotic exit network and cytokinesis until proper centrosome position is achieved. Combined, these studies provide molecular insight into how cells link cellular polarity, spindle position and cell cycle progression.


Assuntos
Centrossomo/fisiologia , Microtúbulos/fisiologia , Transdução de Sinais/fisiologia , Animais , Ciclo Celular , Divisão Celular , Polaridade Celular , Drosophila , Dineínas/fisiologia , Cinesinas/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Fuso Acromático/fisiologia
11.
J Cell Biol ; 155(7): 1173-84, 2001 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-11756471

RESUMO

The attachment of kinetochores to spindle microtubules (MTs) is essential for maintaining constant ploidy in eukaryotic cells. Here, biochemical and imaging data is presented demonstrating that the budding yeast CLIP-170 orthologue Bik1is a component of the kinetochore-MT binding interface. Strikingly, Bik1 is not required for viability in haploid cells, but becomes essential in polyploids. The ploidy-specific requirement for BIK1 enabled us to characterize BIK1 without eliminating nonhomologous genes, providing a new approach to circumventing the overlapping function that is a common feature of the cytoskeleton. In polyploid cells, Bik1 is required before anaphase to maintain kinetochore separation and therefore contributes to the force that opposes the elastic recoil of attached sister chromatids. The role of Bik1 in kinetochore separation appears to be independent of the role of Bik1 in regulating MT dynamics. The finding that a protein involved in kinetochore-MT attachment is required for the viability of polyploids has potential implications for cancer therapeutics.


Assuntos
Proteínas Fúngicas/fisiologia , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/fisiologia , Poliploidia , Sítios de Ligação , Proteínas Fúngicas/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias , Ligação Proteica , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae
12.
Science ; 287(5461): 2260-2, 2000 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-10731147

RESUMO

Correct positioning of the mitotic spindle is critical for cell division and development. Spindle positioning involves a search-and-capture mechanism whereby dynamic microtubules find and then interact with specific sites on the submembrane cortex. Genetic, biochemical, and imaging experiments suggest a mechanism for cortical-microtubule capture. Bim1p, located at microtubule distal ends, bound Kar9p, a protein associated with the daughter cell cortex. Bim1p is the yeast ortholog of human EB1, a binding partner for the adenomatous polyposis coli tumor suppressor. EB1 family proteins may have a general role in linking the microtubule cytoskeleton to cortical polarity determinants.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Fuso Acromático/fisiologia , Proteína da Polipose Adenomatosa do Colo , Sítios de Ligação , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/metabolismo , Fase G1 , Proteínas dos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
13.
J Cell Biol ; 145(5): 993-1007, 1999 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-10352017

RESUMO

Microtubule dynamics vary during the cell cycle, and microtubules appear to be more dynamic in vivo than in vitro. Proteins that promote dynamic instability are therefore central to microtubule behavior in living cells. Here, we report that a yeast protein of the highly conserved EB1 family, Bim1p, promotes cytoplasmic microtubule dynamics specifically during G1. During G1, microtubules in cells lacking BIM1 showed reduced dynamicity due to a slower shrinkage rate, fewer rescues and catastrophes, and more time spent in an attenuated/paused state. Human EB1 was identified as an interacting partner for the adenomatous polyposis coli (APC) tumor suppressor protein. Like human EB1, Bim1p localizes to dots at the distal ends of cytoplasmic microtubules. This localization, together with data from electron microscopy and a synthetic interaction with the gene encoding the kinesin Kar3p, suggests that Bim1p acts at the microtubule plus end. Our in vivo data provide evidence of a cell cycle-specific microtubule-binding protein that promotes microtubule dynamicity.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Fúngicas/fisiologia , Proteínas dos Microtúbulos/fisiologia , Microtúbulos/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/ultraestrutura , Fase G1/fisiologia , Humanos , Microtúbulos/ultraestrutura
14.
Curr Biol ; 9(8): 425-8, 1999 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-10226031

RESUMO

Human EB1 is a highly conserved protein that binds to the carboxyl terminus of the human adenomatous polyposis coli (APC) tumor suppressor protein [1], a domain of APC that is commonly deleted in colorectal neoplasia [2]. EB1 belongs to a family of microtubule-associated proteins that includes Schizosaccharomyces pombe Mal3 [3] and Saccharomyces cerevisiae Bim1p [4]. Bim1p appears to regulate the timing of cytokinesis as demonstrated by a genetic interaction with Act5, a component of the yeast dynactin complex [5]. Whereas the predominant function of the dynactin complex in yeast appears to be in positioning the mitotic spindle [6], in animal cells, dynactin has been shown to function in diverse processes, including organelle transport, formation of the mitotic spindle, and perhaps cytokinesis [7] [8] [9] [10]. Here, we demonstrate that human EB1 can be coprecipitated with p150(Glued), a member of the dynactin protein complex. EB1 was also found associated with the intermediate chain of cytoplasmic dynein (CDIC) and with dynamitin (p50), another component of the dynactin complex, but not with dynein heavy chain, in a complex that sedimented at approximately 5S in a sucrose density gradient. The association of EB1 with members of the dynactin complex was independent of APC and was preserved in the absence of an intact microtubule cytoskeleton. The molecular interaction of EB1 with members of the dynactin complex and with CDIC may be important for microtubule-based processes.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Dineínas/metabolismo , Glicoproteínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo , Transativadores , Proteína da Polipose Adenomatosa do Colo , Animais , Células CHO , Extratos Celulares/química , Cricetinae , Citoplasma/química , Complexo Dinactina , Dineínas/química , Humanos , Células Jurkat , Microtúbulos/metabolismo , Testes de Precipitina , Proteínas de Saccharomyces cerevisiae , Células Tumorais Cultivadas , beta Catenina
15.
J Cell Biol ; 144(5): 947-61, 1999 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-10085293

RESUMO

Alignment of the mitotic spindle with the axis of cell division is an essential process in Saccharomyces cerevisiae that is mediated by interactions between cytoplasmic microtubules and the cell cortex. We found that a cortical protein, the yeast formin Bni1p, was required for spindle orientation. Two striking abnormalities were observed in bni1Delta cells. First, the initial movement of the spindle pole body (SPB) toward the emerging bud was defective. This phenotype is similar to that previously observed in cells lacking the kinesin Kip3p and, in fact, BNI1 and KIP3 were found to be in the same genetic pathway. Second, abnormal pulling interactions between microtubules and the cortex appeared to cause preanaphase spindles in bni1Delta cells to transit back and forth between the mother and the bud. We therefore propose that Bni1p may localize or alter the function of cortical microtubule-binding sites in the bud. Additionally, we present evidence that other bipolar bud site determinants together with cortical actin are also required for spindle orientation.


Assuntos
Proteínas Fúngicas/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Fuso Acromático/fisiologia , Actinas/metabolismo , Sequência de Bases , Sítios de Ligação , Primers do DNA , Proteínas Fúngicas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Microscopia de Fluorescência , Microtúbulos , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia
16.
Crit Rev Biochem Mol Biol ; 33(5): 337-52, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9827704

RESUMO

Protein ubiquitination controls many intracellular processes, including cell cycle progression, transcriptional activation, and signal transduction. Like protein phosphorylation, protein ubiquitination is dynamic, involving enzymes that add ubiquitin (ubiquitin conjugating enzymes) and enzymes that remove ubiquitin (deubiquitinating enzymes). Considerable progress has been made in the understanding of ubiquitin conjugation and its role in regulating protein degradation. Recent studies have demonstrated that regulation also occurs at the level of deubiquitination. Deubiquitinating enzymes are cysteine proteases that specifically cleave ubiquitin from ubiquitin-conjugated protein substrates. Genome sequencing projects have identified many candidate deubiquitinating enzymes, making them the largest family of enzymes in the ubiquitin system. Deubiquitinating enzymes have significant sequence diversity and therefore may have a broad range of substrate specificities. Here we explore the structural and biochemical properties of deubiquitinating enzymes and their emerging roles as cellular switches.


Assuntos
Cisteína Endopeptidases/metabolismo , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma , Proteínas/metabolismo
17.
Proc Natl Acad Sci U S A ; 95(18): 10596-601, 1998 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-9724749

RESUMO

The evolutionarily conserved protein EB1 originally was identified by its physical association with the carboxyl-terminal portion of the adenomatous polyposis coli (APC) tumor suppressor protein, an APC domain commonly mutated in familial and sporadic forms of colorectal neoplasia. The subcellular localization of EB1 in epithelial cells was studied by using immunofluorescence and biochemical techniques. EB1 colocalized both to cytoplasmic microtubules in interphase cells and to spindle microtubules during mitosis, with pronounced centrosome staining. The cytoskeletal array detected by anti-EB1 antibody was abolished by incubation of the cells with nocodazole, an agent that disrupts microtubules; upon drug removal, EB1 localized to the microtubule-organizing center. Immunofluorescence analysis of SW480, a colon cancer cell line that expresses only carboxyl-terminal-deleted APC unable to interact with EB1, demonstrated that EB1 remained localized to the microtubule cytoskeleton, suggesting that this pattern of subcellular distribution is not mediated by its interaction with APC. In vitro cosedimentation with taxol-stabilized microtubules demonstrated that a significant fraction of EB1 associated with microtubules. Recent studies of the yeast EB1 homologues Mal3 and Bim1p have demonstrated that both proteins localize to microtubules and are important in vivo for microtubule function. Our results demonstrate that EB1 is a novel component of the microtubule cytoskeleton in mammalian cells. Associating with the mitotic apparatus, EB1 may play a physiologic role connecting APC to cellular division, coordinating the control of normal growth and differentiation processes in the colonic epithelium.


Assuntos
Polipose Adenomatosa do Colo/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas do Olho , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Transativadores/metabolismo , Animais , Divisão Celular , Linhagem Celular , Chlorocebus aethiops , Imunofluorescência , Microtúbulos/efeitos dos fármacos , Nocodazol/farmacologia , Fuso Acromático/metabolismo
18.
J Cell Biol ; 138(5): 1023-40, 1997 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-9281581

RESUMO

Spindle orientation and nuclear migration are crucial events in cell growth and differentiation of many eukaryotes. Here we show that KIP3, the sixth and final kinesin-related gene in Saccharomyces cerevisiae, is required for migration of the nucleus to the bud site in preparation for mitosis. The position of the nucleus in the cell and the orientation of the mitotic spindle was examined by microscopy of fixed cells and by time-lapse microscopy of individual live cells. Mutations in KIP3 and in the dynein heavy chain gene defined two distinct phases of nuclear migration: a KIP3-dependent movement of the nucleus toward the incipient bud site and a dynein-dependent translocation of the nucleus through the bud neck during anaphase. Loss of KIP3 function disrupts the unidirectional movement of the nucleus toward the bud and mitotic spindle orientation, causing large oscillations in nuclear position. The oscillatory motions sometimes brought the nucleus in close proximity to the bud neck, possibly accounting for the viability of a kip3 null mutant. The kip3 null mutant exhibits normal translocation of the nucleus through the neck and normal spindle pole separation kinetics during anaphase. Simultaneous loss of KIP3 and kinesin-related KAR3 function, or of KIP3 and dynein function, is lethal but does not block any additional detectable movement. This suggests that the lethality is due to the combination of sequential and possibly overlapping defects. Epitope-tagged Kip3p localizes to astral and central spindle microtubules and is also present throughout the cytoplasm and nucleus.


Assuntos
Núcleo Celular/fisiologia , Proteínas Fúngicas/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Alelos , Sequência de Aminoácidos , Sequência de Bases , Núcleo Celular/ultraestrutura , Primers do DNA , Dineínas/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Deleção de Genes , Biblioteca Gênica , Genes Fúngicos , Humanos , Cinesinas , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Modelos Biológicos , Dados de Sequência Molecular , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fuso Acromático/fisiologia , Fuso Acromático/ultraestrutura , Temperatura
19.
Science ; 275(5304): 1311-4, 1997 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-9036857

RESUMO

The molecular mechanisms that link cell-cycle controls to the mitotic apparatus are poorly understood. A component of the Saccharomyces cerevisiae spindle, Ase1, was observed to undergo cell cycle-specific degradation mediated by the cyclosome, or anaphase promoting complex (APC). Ase1 was degraded when cells exited from mitosis and entered G1. Inappropriate expression of stable Ase1 during G1 produced a spindle defect that is sensed by the spindle assembly checkpoint. In addition, loss of ASE1 function destabilized telophase spindles, and expression of a nondegradable Ase1 mutant delayed spindle disassembly. APC-mediated proteolysis therefore appears to regulate both spindle assembly and disassembly.


Assuntos
Anáfase , Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Saccharomyces cerevisiae/citologia , Fuso Acromático/metabolismo , Sequência de Bases , Fase G1 , Mitose , Dados de Sequência Molecular , Morfogênese , Mutagênese Sítio-Dirigida , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/ultraestrutura , Telófase
20.
J Cell Biol ; 130(6): 1373-85, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-7559759

RESUMO

In many eucaryotic cells, the midzone of the mitotic spindle forms a distinct structure containing a specific set of proteins. We have isolated ASE1, a gene encoding a component of the Saccharomyces cerevisiae spindle midzone. Strains lacking both ASE1 and BIK1, which encodes an S. cerevisiae microtubule-associated protein, are inviable. The analysis of the phenotype of a bik1 ase1 conditional double mutant suggests that BIK1 and ASE1 are not required for the assembly of a bipolar spindle, but are essential for anaphase spindle elongation. The steady-state levels of Ase1p are regulated in a manner that is consistent with a function during anaphase: they are low in G1, accumulate to maximal levels after S phase and then drop as cells exit mitosis. Components of the spindle midzone may therefore be required in vivo for anaphase spindle movement. Additionally, anaphase spindle movement may depend on a dedicated set of genes whose expression is induced at G2/M.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Saccharomyces cerevisiae/metabolismo , Anáfase , Sequência de Bases , Divisão Celular , Proteínas Fúngicas/genética , Microscopia Eletrônica , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...