Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Eur J Med Res ; 29(1): 248, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649940

RESUMO

BACKGROUND: Non-invasive respiratory support (conventional oxygen therapy [COT], non-invasive ventilation [NIV], high-flow nasal oxygen [HFNO], and NIV alternated with HFNO [NIV + HFNO] may reduce the need for invasive mechanical ventilation (IMV) in patients with COVID-19. The outcome of patients treated non-invasively depends on clinical severity at admission. We assessed the need for IMV according to NIV, HFNO, and NIV + HFNO in patients with COVID-19 according to disease severity and evaluated in-hospital survival rates and hospital and intensive care unit (ICU) lengths of stay. METHODS: This cohort study was conducted using data collected between March 2020 and July 2021. Patients ≥ 18 years admitted to the ICU with a diagnosis of COVID-19 were included. Patients hospitalized for < 3 days, receiving therapy (COT, NIV, HFNO, or NIV + HFNO) for < 48 h, pregnant, and with no primary outcome data were excluded. The COT group was used as reference for multivariate Cox regression model adjustment. RESULTS: Of 1371 patients screened, 958 were eligible: 692 (72.2%) on COT, 92 (9.6%) on NIV, 31 (3.2%) on HFNO, and 143 (14.9%) on NIV + HFNO. The results for the patients in each group were as follows: median age (interquartile range): NIV (64 [49-79] years), HFNO (62 [55-70] years), NIV + HFNO (62 [48-72] years) (p = 0.615); heart failure: NIV (54.5%), HFNO (36.3%), NIV + HFNO (9%) (p = 0.003); diabetes mellitus: HFNO (17.6%), NIV + HFNO (44.7%) (p = 0.048). > 50% lung damage on chest computed tomography (CT): NIV (13.3%), HFNO (15%), NIV + HFNO (71.6%) (p = 0.038); SpO2/FiO2: NIV (271 [118-365] mmHg), HFNO (317 [254-420] mmHg), NIV + HFNO (229 [102-317] mmHg) (p = 0.001); rate of IMV: NIV (26.1%, p = 0.002), HFNO (22.6%, p = 0.023), NIV + HFNO (46.8%); survival rate: HFNO (83.9%), NIV + HFNO (63.6%) (p = 0.027); ICU length of stay: NIV (8.5 [5-14] days), NIV + HFNO (15 [10-25] days (p < 0.001); hospital length of stay: NIV (13 [10-21] days), NIV + HFNO (20 [15-30] days) (p < 0.001). After adjusting for comorbidities, chest CT score and SpO2/FiO2, the risk of IMV in patients on NIV + HFNO remained high (hazard ratio, 1.88; 95% confidence interval, 1.17-3.04). CONCLUSIONS: In patients with COVID-19, NIV alternating with HFNO was associated with a higher rate of IMV independent of the presence of comorbidities, chest CT score and SpO2/FiO2. Trial registration ClinicalTrials.gov identifier: NCT05579080.


Assuntos
COVID-19 , Ventilação não Invasiva , Oxigenoterapia , Humanos , Ventilação não Invasiva/métodos , Feminino , Masculino , COVID-19/terapia , COVID-19/complicações , Oxigenoterapia/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Tempo de Internação , Unidades de Terapia Intensiva , SARS-CoV-2 , Mortalidade Hospitalar
2.
Braz. j. anesth ; 74(3): 744431, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1564097

RESUMO

Abstract Background: Systemic inflammatory responses mimicking infectious complications are often present in surgical patients. Methods: The objective was to assess the association between withholding early antimicrobial therapy while investigating alternative diagnoses and worse outcomes in nonseptic patients with suspected nosocomial infection in a retrospective cohort of critically ill surgical patients. The initiation of antibiotic therapy within 24 h of the suspicion of infection was defined as the Early Empirical Antibiotic strategy (EEA) group and the initiation after 24 h of suspicion or not prescribed was defined as the Conservative Antibiotic strategy (CA) group. Primary outcome was composite: death, sepsis, or septic shock within 14 days. Main exclusion criteria were sepsis or an evident source of infection at inclusion. Results: Three hundred and forty patients were eligible for inclusion (74% trauma patients). Age, sex, reason for hospital admission, SAPS3 score, SOFA score, and use of vasopressors or mechanical ventilation were not different between the groups. Within 14 days of inclusion, 100% (130/130) of EEA patients received antibiotics compared to 57% (120/210) of CA patients. After adjusting for confounding variables, there was no association between primary outcome and the groups. In a post hoc subgroup analysis including only patients with a posteriori confirmed infection (by microbiological cultures), delay in initiation of adequate antimicrobial therapy was independently associated with the primary outcome (Odds Ratio = 1.19 per day of delay; 95% CI 1.05-1.37). Conclusions: Withholding early empiric antibiotic therapy was not associated with progression of organ dysfunction within 14 days in nonseptic surgical patients with suspected nosocomial infection without an obvious source.

3.
Intensive Care Med Exp ; 11(1): 93, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102452

RESUMO

BACKGROUND: We aimed to evaluate the pulmonary and cerebral effects of low-tidal volume ventilation in pressure-support (PSV) and pressure-controlled (PCV) modes at two PEEP levels in acute ischemic stroke (AIS). METHODS: In this randomized experimental study, AIS was induced by thermocoagulation in 30 healthy male Wistar rats. After 24 h, AIS animals were randomly assigned to PSV or PCV with VT = 6 mL/kg and PEEP = 2 cmH2O (PSV-PEEP2 and PCV-PEEP2) or PEEP = 5 cmH2O (PSV-PEEP5 and PCV-PEEP5) for 2 h. Lung mechanics, arterial blood gases, and echocardiography were evaluated before and after the experiment. Lungs and brain tissue were removed for histologic and molecular biology analysis. The primary endpoint was diffuse alveolar damage (DAD) score; secondary endpoints included brain histology and brain and lung molecular biology markers. RESULTS: In lungs, DAD was lower with PSV-PEEP5 than PCV-PEEP5 (p < 0.001); interleukin (IL)-1ß was lower with PSV-PEEP2 than PCV-PEEP2 (p = 0.016) and PSV-PEEP5 than PCV-PEEP5 (p = 0.046); zonula occludens-1 (ZO-1) was lower in PCV-PEEP5 than PCV-PEEP2 (p = 0.042). In brain, necrosis, hemorrhage, neuropil edema, and CD45 + microglia were lower in PSV than PCV animals at PEEP = 2 cmH2O (p = 0.036, p = 0.025, p = 0.018, p = 0.011, respectively) and PEEP = 5 cmH2O (p = 0.003, p = 0.003, p = 0.007, p = 0.003, respectively); IL-1ß was lower while ZO-1 was higher in PSV-PEEP2 than PCV-PEEP2 (p = 0.009, p = 0.007, respectively), suggesting blood-brain barrier integrity. Claudin-5 was higher in PSV-PEEP2 than PSV-PEEP5 (p = 0.036). CONCLUSION: In experimental AIS, PSV compared with PCV reduced lung and brain injury. Lung ZO-1 reduced in PCV with PEEP = 2 versus PEEP = 5 cmH2O, while brain claudin-5 increased in PSV with PEEP = 2 versus PEEP = 5 cmH2O.

4.
Int Immunopharmacol ; 124(Pt B): 111004, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37778171

RESUMO

BACKGROUND: Dexmedetomidine (DEX) and low-dose ketamine (KET) present neuroprotective effects in acute ischemic stroke (AIS); however, to date, no studies have evaluated which has better protective effects not only on the brain but also lungs in AIS. METHODS: AIS-induced Wistar rats (390 ± 30 g) were randomized after 24-h, receiving dexmedetomidine (STROKE-DEX, n = 10) or low-dose S(+)-ketamine (STROKE-KET, n = 10). After 1-h protective ventilation, perilesional brain tissue and lungs were removed for histologic and molecular biology analysis. STROKE animals (n = 5), receiving sodium thiopental but not ventilated, had brain and lungs removed for molecular biology analysis. Effects of DEX and KET mean plasma concentrations on alveolar macrophages, neutrophils, and lung endothelial cells, extracted primarily 24-h after AIS, were evaluated. RESULTS: In perilesional brain tissue, apoptosis did not differ between groups. In STROKE-DEX, compared to STROKE-KET, tumor necrosis factor (TNF)-α and vascular cell adhesion molecule-1 (VCAM-1) expressions were reduced, but no changes in nuclear factor erythroid 2-related factor-2 (Nrf2) and super oxide dismutase (SOD)-1 were observed. In lungs, TNF-α and VCAM-1 were reduced, whereas Nrf2 and SOD-1 were increased in STROKE-DEX. In alveolar macrophages, TNF-α and inducible nitric oxide synthase (M1 macrophage phenotype) were lower and arginase and transforming growth factor-ß (M2 macrophage phenotype) higher in STROKE-DEX. In lung neutrophils, CXC chemokine receptors (CXCR2 and CXCR4) were higher in STROKE-DEX. In lung endothelial cells, E-selectin and VCAM-1 were lower in STROKE-DEX. CONCLUSIONS: In the current AIS model, dexmedetomidine compared to low-dose ketamine reduced inflammation and endothelial cell damage in both brain and lung, suggesting greater protection.


Assuntos
Dexmedetomidina , AVC Isquêmico , Ketamina , Acidente Vascular Cerebral , Ratos , Animais , Ketamina/metabolismo , Dexmedetomidina/uso terapêutico , Dexmedetomidina/farmacologia , AVC Isquêmico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Células Endoteliais/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Ratos Wistar , Pulmão/patologia , Acidente Vascular Cerebral/metabolismo , Encéfalo/metabolismo
5.
Front Med (Lausanne) ; 10: 1225179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575989

RESUMO

Introduction: Patients with sepsis often require sedation and/or anesthesia. Although the immunomodulatory effects of anesthetics have been increasingly recognized, the molecular mechanisms require better elucidation. We compared the effects of sevoflurane with propofol on the expression of pro- and anti-inflammatory biomarkers released by monocytes/macrophages and blood/bronchoalveolar lavage fluid (BALF) neutrophils, the phagocytic capacity of monocytes/ macrophages, and neutrophil migration, as well as mediators associated with alveolar epithelial and endothelial cells obtained from rats with sepsis. Methods: Polymicrobial sepsis was induced by cecal ligation and puncture in nine male Wistar rats. After 48 h, animals were euthanized and their monocytes/alveolar macrophages, blood and BALF neutrophils, as well as alveolar epithelial and endothelial cells were extracted, and then exposed to (1) sevoflurane (1 minimal alveolar concentration), (2) propofol (50 µM), or (3) saline, control (CTRL) for 1 h. Results: Sevoflurane reduced interleukin (IL)-6 mRNA expression in monocytes and alveolar macrophages (p = 0.007, p = 0.029), whereas propofol decreased IL-6 mRNA only in alveolar macrophages (p = 0.027) compared with CTRL. Sevoflurane increased IL-10 expression (p = 0.0002) in monocytes compared with propofol and increased IL-10 mRNA and transforming growth factor (TGF)-ß mRNA (p = 0.037, p = 0.045) compared with CTRL. Both sevoflurane and propofol did not affect mRNA expression of IL-10 and TGF-ß in alveolar macrophages. The phagocytic capacity of monocytes (p = 0.0006) and alveolar macrophages (p = 0.0004) was higher with sevoflurane compared with propofol. Sevoflurane, compared with CTRL, reduced IL-1ß mRNA (p = 0.003, p = 0.009) and C-X-C chemokine receptor 2 mRNA (CXCR2, p = 0.032 and p = 0.042) in blood and BALF neutrophils, and increased CXCR4 mRNA only in BALF neutrophils (p = 0.004). Sevoflurane increased blood neutrophil migration (p = 0.015) compared with propofol. Both sevoflurane and propofol increased zonula occludens-1 mRNA (p = 0.046, p = 0.003) in alveolar epithelial cells and reduced Toll-like receptor 4 mRNA (p = 0.043, p = 0.006) in alveolar endothelial cells compared with CTRL. Only propofol reduced surfactant protein B mRNA (p = 0.028) in alveolar epithelial cells. Discussion: Sevoflurane, compared with propofol, increased anti-inflammatory biomarkers in monocytes, but not in alveolar macrophages, enhanced monocyte/alveolar macrophage phagocytic capacity and increased neutrophil migration in in vitro experimental sepsis. Both propofol and sevoflurane protected lung epithelial and endothelial cells.

6.
Intensive Care Med Exp ; 11(1): 44, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37474816

RESUMO

Patients on mechanical ventilation may receive intravenous fluids via restrictive or liberal fluid management. A clear and objective differentiation between restrictive and liberal fluid management strategies is lacking in the literature. The liberal approach has been described as involving fluid rates ranging from 1.2 to 12 times higher than the restrictive approach. A restrictive fluid management may lead to hypoperfusion and distal organ damage, and a liberal fluid strategy may result in endothelial shear stress and glycocalyx damage, cardiovascular complications, lung edema, and distal organ dysfunction. The association between fluid and mechanical ventilation strategies and how they interact toward ventilator-induced lung injury (VILI) could potentiate the damage. For instance, the combination of a liberal fluids and pressure-support ventilation, but not pressure control ventilation, may lead to further lung damage in experimental models of acute lung injury. Moreover, under liberal fluid management, the application of high positive end-expiratory pressure (PEEP) or an abrupt decrease in PEEP yielded higher endothelial cell damage in the lungs. Nevertheless, the translational aspects of these findings are scarce. The aim of this narrative review is to provide better understanding of the interaction between different fluid and ventilation strategies and how these interactions may affect lung and distal organs. The weaning phase of mechanical ventilation and the deresuscitation phase are not explored in this review.

7.
Front Med (Lausanne) ; 10: 1137784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261117

RESUMO

Background: Lung weight may be measured with quantitative chest computed tomography (CT) in patients with COVID-19 to characterize the severity of pulmonary edema and assess prognosis. However, this quantitative analysis is often not accessible, which led to the hypothesis that specific laboratory data may help identify overweight lungs. Methods: This cross-sectional study was a secondary analysis of data from SARITA2, a randomized clinical trial comparing nitazoxanide and placebo in patients with COVID-19 pneumonia. Adult patients (≥18 years) requiring supplemental oxygen due to COVID-19 pneumonia were enrolled between April 20 and October 15, 2020, in 19 hospitals in Brazil. The weight of the lungs as well as laboratory data [hemoglobin, leukocytes, neutrophils, lymphocytes, C-reactive protein, D-dimer, lactate dehydrogenase (LDH), and ferritin] and 47 additional specific blood biomarkers were assessed. Results: Ninety-three patients were included in the study: 46 patients presented with underweight lungs (defined by ≤0% of excess lung weight) and 47 patients presented with overweight lungs (>0% of excess lung weight). Leukocytes, neutrophils, D-dimer, and LDH were higher in patients with overweight lungs. Among the 47 blood biomarkers investigated, interferon alpha 2 protein was higher and leukocyte inhibitory factor was lower in patients with overweight lungs. According to CombiROC analysis, the combinations of D-dimer/LDH/leukocytes, D-dimer/LDH/neutrophils, and D-dimer/LDH/leukocytes/neutrophils achieved the highest area under the curve with the best accuracy to detect overweight lungs. Conclusion: The combinations of these specific laboratory data: D-dimer/LDH/leukocytes or D-dimer/LDH/neutrophils or D-dimer/LDH/leukocytes/neutrophils were the best predictors of overweight lungs in patients with COVID-19 pneumonia at hospital admission. Clinical trial registration: Brazilian Registry of Clinical Trials (REBEC) number RBR-88bs9x and ClinicalTrials.gov number NCT04561219.

8.
Front Med (Lausanne) ; 10: 1194773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332761

RESUMO

Coronavirus disease (COVID-19) is caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus and may lead to severe respiratory failure and the need for mechanical ventilation (MV). At hospital admission, patients can present with severe hypoxemia and dyspnea requiring increasingly aggressive MV strategies according to the clinical severity: noninvasive respiratory support (NRS), MV, and the use of rescue strategies such as extracorporeal membrane oxygenation (ECMO). Among NRS strategies, new tools have been adopted for critically ill patients, with advantages and disadvantages that need to be further elucidated. Advances in the field of lung imaging have allowed better understanding of the disease, not only the pathophysiology of COVID-19 but also the consequences of ventilatory strategies. In cases of refractory hypoxemia, the use of ECMO has been advocated and knowledge on handling and how to personalize strategies have increased during the pandemic. The aims of the present review are to: (1) discuss the evidence on different devices and strategies under NRS; (2) discuss new and personalized management under MV based on the pathophysiology of COVID-19; and (3) contextualize the use of rescue strategies such as ECMO in critically ill patients with COVID-19.

9.
Braz J Anesthesiol ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36965628

RESUMO

BACKGROUND: Systemic inflammatory responses mimicking infectious complications are often present in surgical patients. METHODS: The objective was to assess the association between withholding early antimicrobial therapy while investigating alternative diagnoses and worse outcomes in nonseptic patients with suspected nosocomial infection in a retrospective cohort of critically ill surgical patients. The initiation of antibiotic therapy within 24 h of the suspicion of infection was defined as the Early Empirical Antibiotic strategy (EEA) group and the initiation after 24 h of suspicion or not prescribed was defined as the Conservative Antibiotic strategy (CA) group. Primary outcome was composite: death, sepsis, or septic shock within 14 days. Main exclusion criteria were sepsis or an evident source of infection at inclusion. RESULTS: Three hundred and forty patients were eligible for inclusion (74% trauma patients). Age, sex, reason for hospital admission, SAPS3 score, SOFA score, and use of vasopressors or mechanical ventilation were not different between the groups. Within 14 days of inclusion, 100% (130/130) of EEA patients received antibiotics compared to 57% (120/210) of CA patients. After adjusting for confounding variables, there was no association between primary outcome and the groups. In a post hoc subgroup analysis including only patients with a posteriori confirmed infection (by microbiological cultures), delay in initiation of adequate antimicrobial therapy was independently associated with the primary outcome (Odds Ratio = 1.19 per day of delay; 95% CI 1.05-1.37). CONCLUSIONS: Withholding early empiric antibiotic therapy was not associated with progression of organ dysfunction within 14 days in nonseptic surgical patients with suspected nosocomial infection without an obvious source.

10.
J Clin Med ; 12(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675573

RESUMO

BACKGROUND: There is not much evidence on the prognostic utility of different biological markers in patients with severe COVID-19 living at high altitude. The objective of this study was to determine the predictive value of inflammatory and hematological markers for the risk of mortality at 28 days in patients with severe COVID-19 under invasive mechanical ventilation, living at high altitude and in a low-resource setting. METHODS: We performed a retrospective observational study including patients with severe COVID-19, under mechanical ventilation and admitted to the intensive care unit (ICU) located at 2850 m above sea level, between 1 April 2020 and 1 August 2021. Inflammatory (interleukin-6 (IL-6), ferritin, D-dimer, lactate dehydrogenase (LDH)) and hematologic (mean platelet volume (MPV), neutrophil/lymphocyte ratio (NLR), MPV/platelet ratio) markers were evaluated at 24 h and in subsequent controls, and when available at 48 h and 72 h after admission to the ICU. The primary outcome was the association of inflammatory and hematological markers with the risk of mortality at 28 days. RESULTS: We analyzed 223 patients (median age (1st quartile [Q1]-3rd quartile [Q3]) 51 (26-75) years and 70.4% male). Patients with severe COVID-19 and with IL-6 values at 24 h ≥ 11, NLR values at 24 h ≥ 22, and NLR values at 72 h ≥ 14 were 8.3, 3.8, and 3.8 times more likely to die at 28 days, respectively. The SOFA and APACHE-II scores were not able to independently predict mortality. CONCLUSIONS: In mechanically ventilated patients with severe COVID-19 and living at high altitude, low-cost and immediately available blood markers such as IL-6 and NLR may predict the severity of the disease in low-resource settings.

11.
Crit Care ; 27(1): 13, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635711

RESUMO

To ensure neuronal survival after severe traumatic brain injury, oxygen supply is essential. Cerebral tissue oxygenation represents the balance between oxygen supply and consumption, largely reflecting the adequacy of cerebral perfusion. Multiple physiological parameters determine the oxygen delivered to the brain, including blood pressure, hemoglobin level, systemic oxygenation, microcirculation and many factors are involved in the delivery of oxygen to its final recipient, through the respiratory chain. Brain tissue hypoxia occurs when the supply of oxygen is not adequate or when for some reasons it cannot be used at the cellular level. The causes of hypoxia are variable and can be analyzed pathophysiologically following "the oxygen route." The current trend is precision medicine, individualized and therapeutically directed to the pathophysiology of specific brain damage; however, this requires the availability of multimodal monitoring. For this purpose, we developed the acronym "THE MANTLE," a bundle of therapeutical interventions, which covers and protects the brain, optimizing the components of the oxygen transport system from ambient air to the mitochondria.


Assuntos
Lesões Encefálicas Traumáticas , Hipóxia Encefálica , Humanos , Hipóxia Encefálica/etiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/terapia , Encéfalo , Oxigênio/uso terapêutico , Hipóxia/complicações , Circulação Cerebrovascular/fisiologia , Consumo de Oxigênio/fisiologia
12.
Anesthesiology ; 138(4): 420-435, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571572

RESUMO

BACKGROUND: Gradually changing respiratory rate (RR) during time to reduce ventilation-induced lung injury has not been investigated. The authors hypothesized that gradual, compared with abrupt, increments in RR would mitigate ventilation-induced lung injury and that recruitment maneuver before abruptly increasing RR may prevent injurious biologic impact. METHODS: Twenty-four hours after intratracheal administration of Escherichia coli lipopolysaccharide, 49 male Wistar rats were anesthetized and mechanically ventilated (tidal volume, 6 ml/kg; positive end-expiratory pressure, 3 cm H2O) with RR increase patterns as follows (n = 7 per group): (1) control 1, RR = 70 breaths/min for 2 h; (2) and (3) abrupt increases of RR for 1 and 2 h, respectively, both for 2 h; (4) shorter RR adaptation, gradually increasing RR (from 70 to 130 breaths/min during 30 min); (5) longer RR adaptation, more gradual increase in RR (from 70 to 130 breaths/min during 60 min), both for 2 h; (6) control 2, abrupt increase of RR maintained for 1 h; and (7) control 3, recruitment maneuver (continuous positive airway pressure, 30 cm H2O for 30 s) followed by control-2 protocol. RESULTS: At the end of 1 h of mechanical ventilation, cumulative diffuse alveolar damage scores were lower in shorter (11.0 [8.0 to 12.0]) and longer (13.0 [11.0 to 14.0]) RR adaptation groups than in animals with abrupt increase of RR for 1 h (25.0 [22.0 to 26.0], P = 0.035 and P = 0.048, respectively) and 2 h (35.0 [32.0 to 39.0], P = 0.003 and P = 0.040, respectively); mechanical power and lung heterogeneity were lower, and alveolar integrity was higher, in the longer RR adaptation group compared with abruptly adjusted groups; markers of lung inflammation (interleukin-6), epithelial (club cell secretory protein [CC-16]) and endothelial cell damage (vascular cell adhesion molecule 1 [VCAM-1]) were higher in both abrupt groups, but not in either RR adaptation group, compared with controls. Recruitment maneuver prevented the increase in VCAM-1 and CC-16 gene expressions in the abruptly increased RR groups. CONCLUSIONS: In mild experimental acute respiratory distress syndrome in rats, gradually increasing RR, compared with abruptly doing so, can mitigate the development of ventilation-induced lung injury. In addition, recruitment maneuver prevented the injurious biologic impact of abrupt increases in RR.


Assuntos
Produtos Biológicos , Lesão Pulmonar , Síndrome do Desconforto Respiratório , Ratos , Masculino , Animais , Ratos Wistar , Taxa Respiratória , Molécula 1 de Adesão de Célula Vascular , Síndrome do Desconforto Respiratório/prevenção & controle , Pressão Positiva Contínua nas Vias Aéreas
13.
Respir Physiol Neurobiol ; 309: 104000, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36460252

RESUMO

Coronavirus disease-2019 (COVID-19) may severely affect respiratory function and evolve to life-threatening hypoxia. The clinical experience led to the implementation of standardized protocols assuming similarity to severe acute respiratory syndrome (SARS-CoV-2). Understanding the histopathological and functional patterns is essential to better understand the pathophysiology of COVID-19 and then develop new therapeutic strategies. Epithelial and endothelial cell damage can result from the virus attack, thus leading to immune-mediated response. Pulmonary histopathological findings show the presence of Mallory bodies, alveolar coating cells with nuclear atypia, reactive pneumocytes, reparative fibrosis, intra-alveolar hemorrhage, moderate inflammatory infiltrates, micro-abscesses, microthrombus, hyaline membrane fragments, and emphysema-like lung areas. COVID-19 patients may present different respiratory stages from silent to critical hypoxemia, are associated with the degree of pulmonary parenchymal involvement, thus yielding alteration of ventilation and perfusion relationships. This review aims to: discuss the morphological (histopathological and radiological) and functional findings of COVID-19 compared to acute interstitial pneumonia, acute respiratory distress syndrome (ARDS), and high-altitude pulmonary edema (HAPE), four entities that share common clinical traits, but have peculiar pathophysiological features with potential implications to their clinical management.


Assuntos
COVID-19 , Pneumonia , Edema Pulmonar , Síndrome do Desconforto Respiratório , Humanos , COVID-19/complicações , SARS-CoV-2 , Altitude , Edema Pulmonar/diagnóstico por imagem , Edema Pulmonar/etiologia
14.
Front Physiol ; 13: 992401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388107

RESUMO

Background: Fluid regimens in acute respiratory distress syndrome (ARDS) are conflicting. The amount of fluid and positive end-expiratory pressure (PEEP) level may interact leading to ventilator-induced lung injury (VILI). We therefore evaluated restrictive and liberal fluid strategies associated with low and high PEEP levels with regard to lung and kidney damage, as well as cardiorespiratory function in endotoxin-induced ARDS. Methods: Thirty male Wistar rats received an intratracheal instillation of Escherichia coli lipopolysaccharide. After 24 h, the animals were anesthetized, protectively ventilated (VT = 6 ml/kg), and randomized to restrictive (5 ml/kg/h) or liberal (40 ml/kg/h) fluid strategies (Ringer lactate). Both groups were then ventilated with PEEP = 3 cmH2O (PEEP3) and PEEP = 9 cmH2O (PEEP9) for 1 h (n = 6/group). Echocardiography, arterial blood gases, and lung mechanics were evaluated throughout the experiments. Histologic analyses were done on the lungs, and molecular biology was assessed in lungs and kidneys using six non-ventilated animals with no fluid therapy. Results: In lungs, the liberal group showed increased transpulmonary plateau pressure compared with the restrictive group (liberal, 23.5 ± 2.9 cmH2O; restrictive, 18.8 ± 2.3 cmH2O, p = 0.046) under PEEP = 9 cmH2O. Gene expression associated with inflammation (interleukin [IL]-6) was higher in the liberal-PEEP9 group than the liberal-PEEP3 group (p = 0.006) and restrictive-PEEP9 (p = 0.012), Regardless of the fluid strategy, lung mechanical power and the heterogeneity index were higher, whereas birefringence for claudin-4 and zonula-ocludens-1 gene expression were lower in the PEEP9 groups. Perivascular edema was higher in liberal groups, regardless of PEEP levels. Markers related to damage to epithelial cells [club cell secreted protein (CC16)] and the extracellular matrix (syndecan) were higher in the liberal-PEEP9 group than the liberal-PEEP3 group (p = 0.010 and p = 0.024, respectively). In kidneys, the expression of IL-6 and neutrophil gelatinase-associated lipocalin was higher in PEEP9 groups, regardless of the fluid strategy. For the liberal strategy, PEEP = 9 cmH2O compared with PEEP = 3 cmH2O reduced the right ventricle systolic volume (37%) and inferior vena cava collapsibility index (45%). Conclusion: The combination of a liberal fluid strategy and high PEEP led to more lung damage. The application of high PEEP, regardless of the fluid strategy, may also be deleterious to kidneys.

15.
Physiol Rep ; 10(17): e15429, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36065867

RESUMO

Optimal fluid management is critical during mechanical ventilation to mitigate lung damage. Under normovolemia and protective ventilation, pulmonary tensile stress during pressure-support ventilation (PSV) results in comparable lung protection to compressive stress during pressure-controlled ventilation (PCV) in experimental acute lung injury (ALI). It is not yet known whether tensile stress can lead to comparable protection to compressive stress in ALI under a liberal fluid strategy (LF). A conservative fluid strategy (CF) was compared with LF during PSV and PCV on lungs and kidneys in an established model of ALI. Twenty-eight male Wistar rats received endotoxin intratracheally. After 24 h, they were treated with CF (minimum volume of Ringer's lactate to maintain normovolemia and mean arterial pressure ≥70 mmHg) or LF (~4 times higher than CF) combined with PSV or PCV (VT  = 6 ml/kg, PEEP = 3 cmH2 O) for 1 h. Nonventilated animals (n = 4) were used for molecular biology analyses. CF-PSV compared with LF-PSV: (1) decreased the diffuse alveolar damage score (10 [7.8-12] vs. 25 [23-31.5], p = 0.006), mainly due to edema in axial and alveolar parenchyma; (2) increased birefringence for occludin and claudin-4 in lung tissue and expression of zonula-occludens-1 and metalloproteinase-9 in lung. LF compared with CF reduced neutrophil gelatinase-associated lipocalin and interleukin-6 expression in the kidneys in PSV and PCV. In conclusion, CF compared with LF combined with PSV yielded less lung epithelial cell damage in the current model of ALI. However, LF compared with CF resulted in less kidney injury markers, regardless of the ventilatory strategy.


Assuntos
Lesão Pulmonar Aguda , Lesão Pulmonar Aguda/terapia , Animais , Rim , Pulmão , Masculino , Ratos , Ratos Wistar , Respiração Artificial/métodos , Volume de Ventilação Pulmonar
16.
Front Med (Lausanne) ; 9: 844728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492335

RESUMO

Background: Nitazoxanide exerts antiviral activity in vitro and in vivo and anti-inflammatory effects, but its impact on patients hospitalized with COVID-19 pneumonia is uncertain. Methods: A multicentre, randomized, double-blind, placebo-controlled trial was conducted in 19 hospitals in Brazil. Hospitalized adult patients requiring supplemental oxygen, with COVID-19 symptoms and a chest computed tomography scan suggestive of viral pneumonia or positive RT-PCR test for COVID-19 were enrolled. Patients were randomized 1:1 to receive nitazoxanide (500 mg) or placebo, 3 times daily, for 5 days, and were followed for 14 days. The primary outcome was intensive care unit admission due to the need for invasive mechanical ventilation. Secondary outcomes included clinical improvement, hospital discharge, oxygen requirements, death, and adverse events within 14 days. Results: Of the 498 patients, 405 (202 in the nitazoxanide group and 203 in the placebo group) were included in the analyses. Admission to the intensive care unit did not differ between the groups (hazard ratio [95% confidence interval], 0.68 [0.38-1.20], p = 0.179); death rates also did not differ. Nitazoxanide improved the clinical outcome (2.75 [2.21-3.43], p < 0.0001), time to hospital discharge (1.37 [1.11-1.71], p = 0.005), and reduced oxygen requirements (0.77 [0.64-0.94], p = 0.011). C-reactive protein, D-dimer, and ferritin levels were lower in the nitazoxanide group than the placebo group on day 7. No serious adverse events were observed. Conclusions: Nitazoxanide, compared with placebo, did not prevent admission to the intensive care unit for patients hospitalized with COVID-19 pneumonia. Clinical Trial Registration: Brazilian Registry of Clinical Trials (REBEC) RBR88bs9x; ClinicalTrials.gov, NCT04561219.

18.
Br J Anaesth ; 128(6): 1040-1051, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35431038

RESUMO

BACKGROUND: High intraoperative PEEP with recruitment manoeuvres may improve perioperative outcomes. We re-examined this question by conducting a patient-level meta-analysis of three clinical trials in adult patients at increased risk for postoperative pulmonary complications who underwent non-cardiothoracic and non-neurological surgery. METHODS: The three trials enrolled patients at 128 hospitals in 24 countries from February 2011 to February 2018. All patients received volume-controlled ventilation with low tidal volume. Analyses were performed using one-stage, two-level, mixed modelling (site as a random effect; trial as a fixed effect). The primary outcome was a composite of postoperative pulmonary complications within the first week, analysed using mixed-effect logistic regression. Pre-specified subgroup analyses of nine patient characteristics and seven procedure and care-delivery characteristics were also performed. RESULTS: Complete datasets were available for 1913 participants ventilated with high PEEP and recruitment manoeuvres, compared with 1924 participants who received low PEEP. The primary outcome occurred in 562/1913 (29.4%) participants randomised to high PEEP, compared with 620/1924 (32.2%) participants randomised to low PEEP (unadjusted odds ratio [OR]=0.87; 95% confidence interval [95% CI], 0.75-1.01; P=0.06). Higher PEEP resulted in 87/1913 (4.5%) participants requiring interventions for desaturation, compared with 216/1924 (11.2%) participants randomised to low PEEP (OR=0.34; 95% CI, 0.26-0.45). Intraoperative hypotension was associated more frequently (784/1913 [41.0%]) with high PEEP, compared with low PEEP (579/1924 [30.1%]; OR=1.87; 95% CI, 1.60-2.17). CONCLUSIONS: High PEEP combined with recruitment manoeuvres during low tidal volume ventilation in patients undergoing major surgery did not reduce postoperative pulmonary complications. CLINICAL TRIAL REGISTRATION: NCT03937375 (Clinicaltrials.gov).


Assuntos
Pneumopatias , Respiração com Pressão Positiva , Adulto , Humanos , Pulmão , Pneumopatias/epidemiologia , Pneumopatias/etiologia , Respiração com Pressão Positiva/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Período Pós-Operatório , Ensaios Clínicos Controlados Aleatórios como Assunto , Volume de Ventilação Pulmonar
19.
Semin Respir Crit Care Med ; 43(3): 321-334, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35439832

RESUMO

Mechanical ventilation is a life-support system used to ensure blood gas exchange and to assist the respiratory muscles in ventilating the lung during the acute phase of lung disease or following surgery. Positive-pressure mechanical ventilation differs considerably from normal physiologic breathing. This may lead to several negative physiological consequences, both on the lungs and on peripheral organs. First, hemodynamic changes can affect cardiovascular performance, cerebral perfusion pressure (CPP), and drainage of renal veins. Second, the negative effect of mechanical ventilation (compression stress) on the alveolar-capillary membrane and extracellular matrix may cause local and systemic inflammation, promoting lung and peripheral-organ injury. Third, intra-abdominal hypertension may further impair lung and peripheral-organ function during controlled and assisted ventilation. Mechanical ventilation should be optimized and personalized in each patient according to individual clinical needs. Multiple parameters must be adjusted appropriately to minimize ventilator-induced lung injury (VILI), including: inspiratory stress (the respiratory system inspiratory plateau pressure); dynamic strain (the ratio between tidal volume and the end-expiratory lung volume, or inspiratory capacity); static strain (the end-expiratory lung volume determined by positive end-expiratory pressure [PEEP]); driving pressure (the difference between the respiratory system inspiratory plateau pressure and PEEP); and mechanical power (the amount of mechanical energy imparted as a function of respiratory rate). More recently, patient self-inflicted lung injury (P-SILI) has been proposed as a potential mechanism promoting VILI. In the present chapter, we will discuss the physiological and pathophysiological consequences of mechanical ventilation and how to personalize mechanical ventilation parameters.


Assuntos
Respiração Artificial , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Pulmão , Respiração com Pressão Positiva/efeitos adversos , Respiração Artificial/efeitos adversos , Volume de Ventilação Pulmonar/fisiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
20.
J Appl Physiol (1985) ; 132(2): 375-387, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34941443

RESUMO

Increases in positive end-expiratory pressure (PEEP) or recruitment maneuvers may increase stress in lung parenchyma, extracellular matrix, and lung vessels; however, adaptative responses may occur. We evaluated the effects of PEEP on lung damage and cardiac function when increased abruptly, gradually, or more gradually in experimental mild/moderate acute respiratory distress syndrome (ARDS) induced by Escherichia coli lipopolysaccharide intratracheally. After 24 h, Wistar rats (n = 48) were randomly assigned to four mechanical ventilation strategies according to PEEP levels: 1) 3 cmH2O for 2 h (control); 2) 3 cmH2O for 1 h followed by an abrupt increase to 9 cmH2O for 1 h (no adaptation time); 3) 3 cmH2O for 30 min followed by a gradual increase to 9 cmH2O over 30 min then kept constant for 1 h (shorter adaptation time); and 4) more gradual increase in PEEP from 3 cmH2O to 9 cmH2O over 1 h and kept constant thereafter (longer adaptation time). At the end of the experiment, oxygenation improved in the shorter and longer adaptation time groups compared with the no-adaptation and control groups. Diffuse alveolar damage and expressions of interleukin-6, club cell protein-16, vascular cell adhesion molecule-1, amphiregulin, decorin, and syndecan were higher in no adaptation time compared with other groups. Pulmonary arterial pressure was lower in longer adaptation time than in no adaptation (P = 0.002) and shorter adaptation time (P = 0.025) groups. In this model, gradually increasing PEEP limited lung damage and release of biomarkers associated with lung epithelial/endothelial cell and extracellular matrix damage, as well as the PEEP-associated increase in pulmonary arterial pressure.NEW & NOTEWORTHY In a rat model of Escherichia coli lipopolysaccharide-induced mild/moderate acute respiratory distress syndrome, a gradual PEEP increase (shorter adaptation time) effectively mitigated histological lung injury and biomarker release associated with lung inflammation, damage to epithelial cells, endothelial cells, and the extracellular matrix compared with an abrupt increase in PEEP. A more gradual PEEP increase (longer adaptation time) decreased lung damage, pulmonary vessel compression, and pulmonary arterial pressure.


Assuntos
Células Endoteliais , Síndrome do Desconforto Respiratório , Animais , Ratos , Pulmão , Respiração com Pressão Positiva , Ratos Wistar , Síndrome do Desconforto Respiratório/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA