Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2810: 161-180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926279

RESUMO

Bi- and multispecific antibody formats allow the development of new therapeutic strategies to address previously unmet medical needs. However, due to the increased complexity (e.g., the interface design and the presence of multiple binders), such molecules are generally more challenging to express and purify compared to standard monoclonal antibodies (mAbs). We describe here an optimized methodology to express and purify basic bispecific antibodies using the BEAT® interface. This interface allows to generate antibodies with very high levels of heterodimer product (reported titers exceed 10 g/L) and comes with a built-in purification strategy allowing removal of residual levels of undesired product-related impurities (e.g., homodimers and half molecules).


Assuntos
Anticorpos Biespecíficos , Anticorpos Biespecíficos/isolamento & purificação , Humanos , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/biossíntese , Expressão Gênica , Engenharia de Proteínas/métodos , Animais
2.
Methods Mol Biol ; 2810: 181-196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926280

RESUMO

The identification and selection of high-producing cell lines can be a resource- and time-consuming process. The screening effort can be simplified by assessing the potential for high expression (or a desired product quality attribute) of the individual cell directly in a mix of cells. Here, we describe protocols for the use of such a cellular display technology. Using alternate splicing, two mRNA constructs are generated at tunable ratios. The first mRNA codes for the secreted product, the second mRNA attaches a transmembrane domain to the antibody and directs it to the cellular membrane. The design of the basic construct as well as efficient ways to tune the strength of the cellular display is detailed in this chapter. Further, enrichment methods are provided enabling the flow cytometric sorting of a cell population based on the quantity of cellular display or on the product quality (heterodimerization level of a bispecific antibody).


Assuntos
Anticorpos Biespecíficos , Citometria de Fluxo , Anticorpos Biespecíficos/genética , Humanos , Citometria de Fluxo/métodos , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processamento Alternativo
3.
MAbs ; 16(1): 2342243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650451

RESUMO

The controlled expression of two or more proteins at a defined and stable ratio remains a substantial challenge, particularly in the bi- and multispecific antibody field. Achieving an optimal ratio of protein subunits can facilitate the assembly of multimeric proteins with high efficiency and minimize the production of by-products. In this study, we propose a solution based on alternative splicing, enabling the expression of a tunable and predefined ratio of two distinct polypeptide chains from the same pre-mRNA under the control of a single promoter. The pre-mRNA used in this study contains two open reading frames situated on separate exons. The first exon is flanked by two copies of the chicken troponin intron 4 (cTNT-I4) and is susceptible to excision from the pre-mRNA by means of alternative splicing. This specific design enables the modulation of the splice ratio by adjusting the strength of the splice acceptor. To illustrate this approach, we developed constructs expressing varying ratios of GFP and dsRED and extended their application to multimeric proteins such as monoclonal antibodies, achieving industrially relevant expression levels (>1 g/L) in a 14-day fed-batch process. The stability of the splice ratio was confirmed by droplet digital PCR in a stable pool cultivated over a 28-day period, while product quality was assessed via intact mass analysis, demonstrating absence of product-related impurities resulting from undesired splice events. Furthermore, we showcased the versatility of the construct by expressing two subunits of a bispecific antibody of the BEAT® type, which contains three distinct subunits in total.


Assuntos
Processamento Alternativo , Animais , Subunidades Proteicas/genética , Humanos , Galinhas , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/biossíntese , Células CHO , Éxons/genética , Cricetulus , Proteínas de Fluorescência Verde/genética , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/biossíntese , Precursores de RNA/genética
4.
J Biotechnol ; 389: 30-42, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38685416

RESUMO

Ichnos has developed a multi-specific antibody platform based on the BEAT® (Bispecific engagement by antibodies based on the T-cell receptor) interface. The increased complexity of the bi- and multi-specific formats generated with this platform makes these molecules difficult-to-express proteins compared to standard monoclonal antibodies (mAbs). This report describes how expression limitations of a bi-specific bi-paratopic BEAT antibody were improved in a holistic approach. An initial investigation allowed identification of a misbalance in the subunits composing the BEAT antibody as the potential root cause. This misbalance was then addressed by a signal peptide optimization, and the overall expression level was increased by the combination of two vector design elements on a single gene vector. Further improvements were made in the selection of cell populations and an upstream (USP) platform process was applied in combination with a cell culture temperature shift. This allowed titer levels of up to 6 g/L to be reached with these difficult-to-express proteins. Furthermore, a high-density seeding process was developed that allowed titers of around 11 g/L for the BEAT antibody, increasing the initial titer by a factor of 10. The approach was successfully applied to a tri-specific antibody with titer levels reaching 10 g/L. In summary, a platform process for difficult-to-express proteins was developed using molecular biology tools, cell line development, upstream process optimization and process intensification.


Assuntos
Anticorpos Monoclonais , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/biossíntese , Células CHO , Cricetulus , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...