Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(14): 3812-3825, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161893

RESUMO

The distribution of genetic diversity is often heterogeneous in space, and it usually correlates with environmental transitions or historical processes that affect demography. The coast of Chile encompasses two biogeographic provinces and spans a broad environmental gradient together with oceanographic processes linked to coastal topography that can affect species' genetic diversity. Here, we evaluated the genetic connectivity and historical demography of four Scurria limpets, S. scurra, S. variabilis, S. ceciliana and S. araucana, between ca. 19° S and 53° S in the Chilean coast using genome-wide SNPs markers. Genetic structure varied among species which was evidenced by species-specific breaks together with two shared breaks. One of the shared breaks was located at 22-25° S and was observed in S. araucana and S. variabilis, while the second break around 31-34° S was shared by three Scurria species. Interestingly, the identified genetic breaks are also shared with other low-disperser invertebrates. Demographic histories show bottlenecks in S. scurra and S. araucana populations and recent population expansion in all species. The shared genetic breaks can be linked to oceanographic features acting as soft barriers to dispersal and also to historical climate, evidencing the utility of comparing multiple and sympatric species to understand the influence of a particular seascape on genetic diversity.


Assuntos
Gastrópodes , Genética Populacional , Animais , Gastrópodes/genética , Clima , Demografia , Estruturas Genéticas , Variação Genética/genética
2.
Ecol Evol ; 12(5): e8888, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35571762

RESUMO

The study of sister species that occur in parapatry around biogeographic transition zones can help understand the evolutionary processes that underlie the changes in species composition across biogeographic transition zones. The South Eastern Pacific (SEP) coast is a highly productive coastal system that exhibits a broad biogeographic transition zone around 30-35°S. Here, we present a comparative genome-wide analysis of the sister species Scurria viridula and Scurria zebrina, that occur in parapatry and whose poleward and equatorward range edges intersect in the 30-35°S SEP biogeographic transition zone. We sampled 118 specimens sourced from nine sites from Tocopilla (22°S) to Chiloé (41°S) including one site where both species overlap and analyzed over 8000 biallelic single nucleotide polymorphisms. We found evidence of hybridization between these species in the contact zone and found significant but contrasting population structures for both species. Our results indicate that the genetic structure in S. viridula, which is currently expanding its range poleward, follows a simple isolation by distance model with no traces of natural selection (no evidence of outlier loci). In contrast, S. zebrina, which has  its equatorward range edge at the transition zone, displayed a pronounced genetic break approximately at 32-34°S, along a region of marked environmental heterogeneity in association with a semi-permanent coastal upwelling regime. For S. zebrina we also found 43 outlier loci associated with this genetic break, with a significant proportion of them clustering in a single linkage group. This marked difference in the presence of outlier loci between species suggests that they could be responding differently to local environmental challenges found at their overlapping geographic range edges, thus providing important new insights about genomic changes around biogeographic transition zones in sister species and the forces that shape genetic diversity in intertidal marine species.

3.
J Hered ; 105(4): 572-575, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24778435

RESUMO

In the Southwest Atlantic, coral reefs are unique due to their growth form, low species richness, and a high level of endemic coral species, which include the most important reef builders. Although these reefs are the only true biogenic reefs in the South Atlantic Ocean, population genetic studies are still lacking. The purpose of this study was to develop a suite of microsatellite loci to help gain insights into the population diversity and connectivity of the endemic scleractinian coral with the largest distributional range along the Southwest Atlantic coast, Mussismilia hispida Fourteen microsatellite loci were characterized, and their degree of polymorphism was analyzed in 33 individuals. The number of alleles varied between 4 and 17 per loci, and H o varied between 0.156 and 0.928, with 2 loci showing significant heterozygote deficiency. Cross-amplification tests on the other 2 species of the genus (Mussismilia braziliensis and Mussismilia harttii) demonstrated that these markers are suitable for studies of population diversity and structure of all 3 species of Mussismilia Because they are the most important reef builders in the Southwest Atlantic, the developed microsatellite loci may be important tools for connectivity and conservation studies of these endemic corals.


Assuntos
Antozoários/genética , Variação Genética , Genética Populacional , Repetições de Microssatélites , Animais , Antozoários/classificação , Oceano Atlântico , Brasil , Marcadores Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...