Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsy Res ; 202: 107357, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582073

RESUMO

PURPOSE: Focal cortical dysplasias (FCDs) are a leading cause of drug-resistant epilepsy. Early detection and resection of FCDs have favorable prognostic implications for postoperative seizure freedom. Despite advancements in imaging methods, FCD detection remains challenging. House et al. (2021) introduced a convolutional neural network (CNN) for automated FCD detection and segmentation, achieving a sensitivity of 77.8%. However, its clinical applicability was limited due to a low specificity of 5.5%. The objective of this study was to improve the CNN's performance through data-driven training and algorithm optimization, followed by a prospective validation on daily-routine MRIs. MATERIAL AND METHODS: A dataset of 300 3 T MRIs from daily clinical practice, including 3D T1 and FLAIR sequences, was prospectively compiled. The MRIs were visually evaluated by two neuroradiologists and underwent morphometric assessment by two epileptologists. The dataset included 30 FCD cases (11 female, mean age: 28.1 ± 10.1 years) and a control group of 150 normal cases (97 female, mean age: 32.8 ± 14.9 years), along with 120 non-FCD pathological cases (64 female, mean age: 38.4 ± 18.4 years). The dataset was divided into three subsets, each analyzed by the CNN. Subsequently, the CNN underwent a two-phase-training process, incorporating subset MRIs and expert-labeled FCD maps. This training employed both classical and continual learning techniques. The CNN's performance was validated by comparing the baseline model with the trained models at two training levels. RESULTS: In prospective validation, the best model trained using continual learning achieved a sensitivity of 90.0%, specificity of 70.0%, and accuracy of 72.0%, with an average of 0.41 false positive clusters detected per MRI. For FCD segmentation, an average Dice coefficient of 0.56 was attained. The model's performance improved in each training phase while maintaining a high level of sensitivity. Continual learning outperformed classical learning in this regard. CONCLUSIONS: Our study presents a promising CNN for FCD detection and segmentation, exhibiting both high sensitivity and specificity. Furthermore, the model demonstrates continuous improvement with the inclusion of more clinical MRI data. We consider our CNN a valuable tool for automated, examiner-independent FCD detection in daily clinical practice, potentially addressing the underutilization of epilepsy surgery in drug-resistant focal epilepsy and thereby improving patient outcomes.


Assuntos
Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical , Redes Neurais de Computação , Humanos , Feminino , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/cirurgia , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto , Estudos Prospectivos , Adulto Jovem , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Processamento de Imagem Assistida por Computador/métodos , Adolescente , Algoritmos , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Displasia Cortical Focal
2.
Epilepsy Res ; 172: 106594, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33677163

RESUMO

PURPOSE: Focal cortical dysplasias (FCDs) represent one of the most frequent causes of pharmaco-resistant focal epilepsies. Despite improved clinical imaging methods over the past years, FCD detection remains challenging, as FCDs vary in location, size, and shape and commonly blend into surrounding tissues without clear definable boundaries. We developed a novel convolutional neural network for FCD detection and segmentation and validated it prospectively on daily-routine MRIs. MATERIAL AND METHODS: The neural network was trained on 201 T1 and FLAIR 3 T MRI volume sequences of 158 patients with mainly FCDs, regardless of type, and 7 focal PMG. Non-FCD/PMG MRIs, drawn from 100 normal MRIs and 50 MRIs with non-FCD/PMG pathologies, were added to the training. We applied the algorithm prospectively on 100 consecutive MRIs of patients with focal epilepsy from daily clinical practice. The results were compared with corresponding neuroradiological reports and morphometric MRI analyses evaluated by an experienced epileptologist. RESULTS: Best training results reached a sensitivity (recall) of 70.1 % and a precision of 54.3 % for detecting FCDs. Applied on the daily-routine MRIs, 7 out of 9 FCDs were detected and segmented correctly with a sensitivity of 77.8 % and a specificity of 5.5 %. The results of conventional visual analyses were 33.3 % and 94.5 %, respectively (3/9 FCDs detected); the results of morphometric analyses with overall epileptologic evaluation were both 100 % (9/9 FCDs detected) and thus served as reference. CONCLUSION: We developed a 3D convolutional neural network with autoencoder regularization for FCD detection and segmentation. Our algorithm employs the largest FCD training dataset to date with various types of FCDs and some focal PMG. It provided a higher sensitivity in detecting FCDs than conventional visual analyses. Despite its low specificity, the number of false positively predicted lesions per MRI was lower than with morphometric analysis. We consider our algorithm already useful for FCD pre-screening in everyday clinical practice.


Assuntos
Epilepsias Parciais , Malformações do Desenvolvimento Cortical , Inteligência Artificial , Epilepsias Parciais/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Redes Neurais de Computação , Estudos Prospectivos
3.
Epilepsy Res ; 159: 106247, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794952

RESUMO

PURPOSE: It is unknown which patient education strategy before epilepsy surgery or stereotactic electrode implantation is best for patients. This prospective and randomized clinical study investigates whether the use of the mixed reality tool "VSI Patient Education" (VSI PE) running on HoloLens® glasses is superior to the use of a rubber brain model as a 3-dimensional tool for patient education before epilepsy surgery and stereotactic electrode implantation. MATERIAL AND METHODS: 17 patients with indication for epilepsy surgery or stereotactic electrode implantation were included in the study and randomized into two groups. All patients were informed with both comparative tools VSI PE (apoQlar®) and a rubber brain model (3B Scientific®) in a chronological order depending on group assignment. Afterwards, the patient and, if present, a relative (12) each filled out a questionnaire. For statistical analysis, Wilcoxon rank-sum tests were performed. RESULTS: Patients found their patient education highly significantly more comprehensible (p = 0.001**, r = 0.84) and almost significantly more imaginable (p=0.020, r = 0.57), when their doctor used VSI PE compared to the rubber brain model. The patients felt significantly less anxious as a result of VSI PE (p = 0.008*, r = 0.64). Highly significantly more patients chose VSI PE as the preferred patient education tool (p < 0.001**, r = 0.91), and almost significantly more patients decided VSI PE to be the future standard tool (p = 0.020, r = 0.56). Significantly more relatives chose VSI PE as the preferred patient education tool (p = 0.004*, r = 0.83), and significantly more relatives decided VSI PE to be the future standard tool (p = 0.002*, r = 0.91). CONCLUSION: VSI Patient Education is a promising new mixed reality tool for informing patients before epileptic surgery or stereotactic electrode implantation in order to enhance comprehension and imagination and reduce fear and worries. It might strengthen patient commitment and have a positive influence on patients' decisions in favor of medically indicated surgical operations.


Assuntos
Encéfalo/cirurgia , Estimulação Encefálica Profunda , Eletrodos Implantados , Epilepsia/cirurgia , Educação de Pacientes como Assunto , Adulto , Realidade Aumentada , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...