Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 51(342): 71-9, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10938797

RESUMO

In this manuscript, recent research from this laboratory into physiological and molecular aspects of heavy metal (Zn) transport in the hyperaccumulating plant species, Thlaspi caerulescens is reviewed. This research is aimed at elucidating the processes that underlie the accumulation of extraordinarily high levels of Zn in the T. caerulescens shoot (up to 3% Zn dry wt.) without any associated toxicity symptom. Physiological studies focused on the use of radiotracer flux techniques (65Zn2+) to characterize zinc transport and compartmentation in the root, and translocation and accumulation in the shoot of T. caerulescens in comparison with a related non-accumulator, T. arvense. These studies indicated that Zn transport was stimulated at a number of sites in T. caerulescens, contributing to the hyperaccumulation trait. The transport processes that were stimulated included Zn influx into both root and leaf cells, and Zn loading into the xylem. The 4- to 5-fold stimulation of Zn influx into the root was hypothesized to be due to an increased abundance of Zn transporters in T. caerulescens root cells. Additionally, compartmental analysis (radiotracer wash out or efflux techniques) was used to show that Zn was sequestered in the vacuoles of T. arvense root cells which retarded Zn translocation to the shoot in this non-accumulator species. Molecular studies have focused on the cloning and characterization of Zn transport genes in T. caerulescens. Complementation of a yeast Zn transport-defective mutant with a T. caerulescens cDNA library resulted in the recovery of a cDNA, ZNT1, that encodes a Zn transporter. Sequence analysis of ZNT1 indicated it is a member of a recently discovered micronutrient transport gene family which includes the Arabidopsis Fe transporter, IRT1, and the ZIP Zn transporters. Expression of ZNT1 in yeast allowed for a physiological characterization of this transporter. It was shown to encode a high affinity Zn transporter which can also mediate low affinity Cd transport. Northern analysis of ZNT1 and its homologue in the two Thlaspi species indicated that enhanced Zn transport in T. caerulescens results from a constitutively high expression of the ZNT1 gene in roots and shoots. In T. arvense, ZNT1 is expressed at far lower levels and this expression is stimulated by imposition of Zn deficiency.


Assuntos
Proteínas de Transporte de Cátions , Plantas/metabolismo , Zinco/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA Complementar , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo
2.
Proc Natl Acad Sci U S A ; 97(9): 4956-60, 2000 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-10781104

RESUMO

An integrated molecular and physiological investigation of the fundamental mechanisms of heavy metal accumulation was conducted in Thlaspi caerulescens, a Zn/Cd-hyperaccumulating plant species. A heavy metal transporter cDNA, ZNT1, was cloned from T. caerulescens through functional complementation in yeast and was shown to mediate high-affinity Zn(2+) uptake as well as low-affinity Cd(2+) uptake. It was found that this transporter is expressed at very high levels in roots and shoots of the hyperaccumulator. A study of ZNT1 expression and high-affinity Zn(2+) uptake in roots of T. caerulescens and in a related nonaccumulator, Thlaspi arvense, showed that alteration in the regulation of ZNT1 gene expression by plant Zn status results in the overexpression of this transporter and in increased Zn influx in roots of the hyperaccumulating Thlaspi species. These findings yield insights into the molecular regulation and control of plant heavy metal and micronutrient accumulation and homeostasis, as well as provide information that will contribute to the advancement of phytoremediation by the future engineering of plants with improved heavy metal uptake and tolerance.


Assuntos
Cádmio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Clonagem Molecular , Teste de Complementação Genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Plantas/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...