Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pediatr Genet ; 13(1): 29-34, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567173

RESUMO

FOXP1 encodes a transcription factor involved in tissue regulation and cell-type-specific functions. Haploinsufficiency of FOXP1 is associated with a neurodevelopmental disorder: autosomal dominant mental retardation with language impairment with or without autistic features. More recently, heterozygous FOXP1 variants have also been shown to cause a variety of structural birth defects including central nervous system (CNS) anomalies, congenital heart defects, congenital anomalies of the kidney and urinary tract, cryptorchidism, and hypospadias. In this report, we present a previously unpublished case of an individual with congenital diaphragmatic hernia (CDH) who carries an approximately 3.8 Mb deletion. Based on this deletion, and deletions previously reported in two other individuals with CDH, we define a CDH critical region on chromosome 3p13 that includes FOXP1 and four other protein-coding genes. We also provide detailed clinical descriptions of two previously reported individuals with CDH who carry de novo, pathogenic variants in FOXP1 that are predicted to trigger nonsense-mediated mRNA decay. A subset of individuals with putatively deleterious FOXP4 variants has also been shown to develop CDH. Since FOXP proteins function as homo- or heterodimers and the homologs of FOXP1 and FOXP4 are expressed at the same time points in the embryonic mouse diaphragm, they may function together as a dimer, or in parallel as homodimers, to regulate gene expression during diaphragm development. Not all individuals with heterozygous, loss-of-function changes in FOXP1 develop CDH. Hence, we conclude that FOXP1 acts as a susceptibility factor that contributes to the development of CDH in conjunction with other genetic, epigenetic, environmental, and/or stochastic factors.

2.
Front Cell Dev Biol ; 11: 1254313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779896

RESUMO

Deregulation of tumor cell metabolism is widely recognized as a "hallmark of cancer." Many of the selective pressures encountered by tumor cells, such as exposure to anticancer therapies, navigation of the metastatic cascade, and communication with the tumor microenvironment, can elicit further rewiring of tumor cell metabolism. Furthermore, phenotypic plasticity has been recently appreciated as an emerging "hallmark of cancer." Mitochondria are dynamic organelles and central hubs of metabolism whose roles in cancers have been a major focus of numerous studies. Importantly, therapeutic approaches targeting mitochondria are being developed. Interestingly, both plastic (i.e., reversible) and permanent (i.e., stable) metabolic adaptations have been observed following exposure to anticancer therapeutics. Understanding the plastic or permanent nature of these mechanisms is of crucial importance for devising the initiation, duration, and sequential nature of metabolism-targeting therapies. In this review, we compare permanent and plastic mitochondrial mechanisms driving therapy resistance. We also discuss experimental models of therapy-induced metabolic adaptation, therapeutic implications for targeting permanent and plastic metabolic states, and clinical implications of metabolic adaptations. While the plasticity of metabolic adaptations can make effective therapeutic treatment challenging, understanding the mechanisms behind these plastic phenotypes may lead to promising clinical interventions that will ultimately lead to better overall care for cancer patients.

3.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732227

RESUMO

Xenograft models are attractive models that mimic human tumor biology and permit one to perturb the tumor microenvironment and study its drug response. Spatially resolved transcriptomics (SRT) provide a powerful way to study the organization of xenograft models, but currently there is a lack of specialized pipeline for processing xenograft reads originated from SRT experiments. Xenomake is a standalone pipeline for the automated handling of spatial xenograft reads. Xenomake handles read processing, alignment, xenograft read sorting, quantification, and connects well with downstream spatial analysis packages. We additionally show that Xenomake can correctly assign organism specific reads, reduce sparsity of data by increasing gene counts, while maintaining biological relevance for studies.

4.
Hum Mol Genet ; 32(13): 2152-2161, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37000005

RESUMO

SOX7 is a transcription factor-encoding gene located in a region on chromosome 8p23.1 that is recurrently deleted in individuals with ventricular septal defects (VSDs). We have previously shown that Sox7-/- embryos die of heart failure around E11.5. Here, we demonstrate that these embryos have hypocellular endocardial cushions with severely reduced numbers of mesenchymal cells. Ablation of Sox7 in the endocardium also resulted in hypocellular endocardial cushions, and we observed VSDs in rare E15.5 Sox7flox/-;Tie2-Cre and Sox7flox/flox;Tie2-Cre embryos that survived to E15.5. In atrioventricular explant studies, we showed that SOX7 deficiency leads to a severe reduction in endocardial-to-mesenchymal transition (EndMT). RNA-seq studies performed on E9.5 Sox7-/- heart tubes revealed severely reduced Wnt4 transcript levels. Wnt4 is expressed in the endocardium and promotes EndMT by acting in a paracrine manner to increase the expression of Bmp2 in the myocardium. Both WNT4 and BMP2 have been previously implicated in the development of VSDs in individuals with 46,XX sex reversal with dysgenesis of kidney, adrenals and lungs (SERKAL) syndrome and in individuals with short stature, facial dysmorphism and skeletal anomalies with or without cardiac anomalies 1 (SSFSC1) syndrome, respectively. We now show that Sox7 and Wnt4 interact genetically in the development of VSDs through their additive effects on endocardial cushion development with Sox7+/-;Wnt4+/- double heterozygous embryos having hypocellular endocardial cushions and perimembranous and muscular VSDs not seen in their Sox7+/- and Wnt4+/- littermates. These results provide additional evidence that SOX7, WNT4 and BMP2 function in the same pathway during mammalian septal development and that their deficiency can contribute to the development of VSDs in humans.


Assuntos
Cardiopatias Congênitas , Comunicação Interventricular , Animais , Camundongos , Endocárdio/metabolismo , Coração , Cardiopatias Congênitas/genética , Comunicação Interventricular/genética , Comunicação Interventricular/metabolismo , Miocárdio/metabolismo , Fatores de Transcrição SOXF/metabolismo
5.
Oncogene ; 42(14): 1117-1131, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813854

RESUMO

Neoadjuvant chemotherapy (NACT) used for triple negative breast cancer (TNBC) eradicates tumors in ~45% of patients. Unfortunately, TNBC patients with substantial residual cancer burden have poor metastasis free and overall survival rates. We previously demonstrated mitochondrial oxidative phosphorylation (OXPHOS) was elevated and was a unique therapeutic dependency of residual TNBC cells surviving NACT. We sought to investigate the mechanism underlying this enhanced reliance on mitochondrial metabolism. Mitochondria are morphologically plastic organelles that cycle between fission and fusion to maintain mitochondrial integrity and metabolic homeostasis. The functional impact of mitochondrial structure on metabolic output is highly context dependent. Several chemotherapy agents are conventionally used for neoadjuvant treatment of TNBC patients. Upon comparing mitochondrial effects of conventional chemotherapies, we found that DNA-damaging agents increased mitochondrial elongation, mitochondrial content, flux of glucose through the TCA cycle, and OXPHOS, whereas taxanes instead decreased mitochondrial elongation and OXPHOS. The mitochondrial effects of DNA-damaging chemotherapies were dependent on the mitochondrial inner membrane fusion protein optic atrophy 1 (OPA1). Further, we observed heightened OXPHOS, OPA1 protein levels, and mitochondrial elongation in an orthotopic patient-derived xenograft (PDX) model of residual TNBC. Pharmacologic or genetic disruption of mitochondrial fusion and fission resulted in decreased or increased OXPHOS, respectively, revealing longer mitochondria favor oxphos in TNBC cells. Using TNBC cell lines and an in vivo PDX model of residual TNBC, we found that sequential treatment with DNA-damaging chemotherapy, thus inducing mitochondrial fusion and OXPHOS, followed by MYLS22, a specific inhibitor of OPA1, was able to suppress mitochondrial fusion and OXPHOS and significantly inhibit regrowth of residual tumor cells. Our data suggest that TNBC mitochondria can optimize OXPHOS through OPA1-mediated mitochondrial fusion. These findings may provide an opportunity to overcome mitochondrial adaptations of chemoresistant TNBC.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Mitocôndrias/metabolismo , Fosforilação Oxidativa
6.
Blood Cancer Discov ; 2(6): 600-615, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34778800

RESUMO

Waldenstrom macroglobulinemia (WM) and its precursor IgM gammopathy are distinct disorders characterized by clonal mature IgM-expressing B-cell outgrowth in the bone marrow. Here, we show by high-dimensional single-cell immunogenomic profiling of patient samples that these disorders originate in the setting of global B-cell compartment alterations, characterized by expansion of genomically aberrant extrafollicular B cells of the nonmalignant clonotype. Alterations in the immune microenvironment preceding malignant clonal expansion include myeloid inflammation and naïve B- and T-cell depletion. Host response to these early lesions involves clone-specific T-cell immunity that may include MYD88 mutation-specific responses. Hematopoietic progenitors carry the oncogenic MYD88 mutations characteristic of the malignant WM clone. These data support a model for WM pathogenesis wherein oncogenic alterations and signaling in progenitors, myeloid inflammation, and global alterations in extrafollicular B cells create the milieu promoting extranodal pattern of growth in differentiated malignant cells. SIGNIFICANCE: These data provide evidence that growth of the malignant clone in WM is preceded by expansion of extrafollicular B cells, myeloid inflammation, and immune dysfunction in the preneoplastic phase. These changes may be related in part to MYD88 oncogenic signaling in pre-B progenitor cells and suggest a novel model for WM pathogenesis. This article is highlighted in the In This Issue feature, p. 549.


Assuntos
Fator 88 de Diferenciação Mieloide , Macroglobulinemia de Waldenstrom , Linfócitos B/patologia , Humanos , Inflamação/genética , Fator 88 de Diferenciação Mieloide/genética , Oncogenes , Microambiente Tumoral , Macroglobulinemia de Waldenstrom/genética
7.
JCI Insight ; 5(16)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32692727

RESUMO

Current management of childhood leukemia is tailored based on disease risk determined by clinical features at presentation. Whether properties of the host immune response impact disease risk and outcome is not known. Here, we combine mass cytometry, single cell genomics, and functional studies to characterize the BM immune environment in children with B cell acute lymphoblastic leukemia and acute myelogenous leukemia at presentation. T cells in leukemia marrow demonstrate evidence of chronic immune activation and exhaustion/dysfunction, with attrition of naive T cells and TCF1+ stem-like memory T cells and accumulation of terminally differentiated effector T cells. Marrow-infiltrating NK cells also exhibit evidence of dysfunction, particularly in myeloid leukemia. Properties of immune cells identified distinct immune phenotype-based clusters correlating with disease risk in acute lymphoblastic leukemia. High-risk immune signatures were associated with expression of stem-like genes on tumor cells. These data provide a comprehensive assessment of the immune landscape of childhood leukemias and identify targets potentially amenable to therapeutic intervention. These studies also suggest that properties of the host response with depletion of naive T cells and accumulation of terminal-effector T cells may contribute to the biologic basis of disease risk. Properties of immune microenvironment identified here may also impact optimal application of immune therapies, including T cell-redirection approaches in childhood leukemia.


Assuntos
Medula Óssea/patologia , Leucemia Mieloide Aguda/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linfócitos T/patologia , Microambiente Tumoral/imunologia , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Células Matadoras Naturais/patologia , Leucemia Mieloide Aguda/imunologia , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Reprodutibilidade dos Testes , Fatores de Risco , Análise de Célula Única , Linfócitos T/imunologia
8.
JCI Insight ; 5(12)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32427579

RESUMO

BACKGROUNDPD-1 and PD-L1 have been studied interchangeably in the clinic as checkpoints to reinvigorate T cells in diverse tumor types. Data for biologic effects of checkpoint blockade in human premalignancy are limited.METHODSWe analyzed the immunologic effects of PD-L1 blockade in a clinical trial of atezolizumab in patients with asymptomatic multiple myeloma (AMM), a precursor to clinical malignancy. Genomic signatures of PD-L1 blockade in purified monocytes and T cells in vivo were also compared with those following PD-1 blockade in lung cancer patients. Effects of PD-L1 blockade on monocyte-derived DCs were analyzed to better understand its effects on myeloid antigen-presenting cells.RESULTSIn contrast to anti-PD-1 therapy, anti-PD-L1 therapy led to a distinct inflammatory signature in CD14+ monocytes and increase in myeloid-derived cytokines (e.g., IL-18) in vivo. Treatment of AMM patients with atezolizumab led to rapid activation and expansion of circulating myeloid cells, which persisted in the BM. Blockade of PD-L1 on purified monocyte-derived DCs led to rapid inflammasome activation and synergized with CD40L-driven DC maturation, leading to greater antigen-specific T cell expansion.CONCLUSIONThese data show that PD-L1 blockade leads to distinct systemic immunologic effects compared with PD-1 blockade in vivo in humans, particularly manifest as rapid myeloid activation. These findings also suggest an additional role for PD-L1 as a checkpoint for regulating inflammatory phenotype of myeloid cells and antigen presentation in DCs, which may be harnessed to improve PD-L1-based combination therapies.TRIAL REGISTRATIONNCT02784483.FUNDINGThis work is supported, in part, by funds from NIH/NCI (NCI CA197603, CA238471, and CA208328).


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antígeno B7-H1/imunologia , Mieloma Múltiplo/tratamento farmacológico , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Células Apresentadoras de Antígenos/imunologia , Humanos , Imunoterapia/métodos , Inflamação/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Mieloma Múltiplo/imunologia , Receptor de Morte Celular Programada 1/efeitos dos fármacos
9.
JCI Insight ; 52019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31013254

RESUMO

Preneoplastic lesions carry many of the antigenic targets found in cancer cells but often exhibit prolonged dormancy. Understanding how the host response to premalignancy is maintained and altered during malignant transformation is needed to prevent cancer. In order to understand the immune microenvironment in precursor monoclonal gammopathy of undetermined significance (MGUS) and myeloma, we analyzed bone marrow immune cells from 12 healthy donors and 26 MGUS/myeloma patients by mass cytometry and concurrently profiled transcriptomes of 42,606 single immune cells from these bone marrows. Compared to age-matched healthy donors, memory T cells from both MGUS and myeloma patients exhibit greater terminal-effector differentiation. However, memory T cells in MGUS show greater enrichment of stem-like TCF1/7hi cells. Clusters of T cells with stem-like and tissue-residence genes were also found to be enriched in MGUS by single-cell transcriptome analysis. Early changes in both NK and myeloid cells were also observed in MGUS. Enrichment of stem-like T cells correlated with a distinct genomic profile of myeloid cells and levels of Dickkopf-1 in bone-marrow plasma. These data describe the landscape of changes in both innate and adaptive immunity in premalignancy and suggest that attrition of the bone-marrow-resident T cell compartment due to loss of stem-like cells may underlie loss of immune surveillance in myeloma.


Assuntos
Medula Óssea/imunologia , Transformação Celular Neoplásica/imunologia , Gamopatia Monoclonal de Significância Indeterminada/imunologia , Mieloma Múltiplo/imunologia , Células Mieloides/imunologia , Lesões Pré-Cancerosas/imunologia , Linfócitos T/imunologia , Medula Óssea/patologia , Transformação Celular Neoplásica/genética , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Imunidade Inata/genética , Memória Imunológica/genética , Vigilância Imunológica/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Pessoa de Meia-Idade , Gamopatia Monoclonal de Significância Indeterminada/genética , Gamopatia Monoclonal de Significância Indeterminada/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Células Mieloides/metabolismo , Lesões Pré-Cancerosas/patologia , RNA-Seq , Análise de Célula Única , Células-Tronco/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...