Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 625(7994): 276-281, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200300

RESUMO

In the field of semiconductors, three-dimensional (3D) integration not only enables packaging of more devices per unit area, referred to as 'More Moore'1 but also introduces multifunctionalities for 'More than Moore'2 technologies. Although silicon-based 3D integrated circuits are commercially available3-5, there is limited effort on 3D integration of emerging nanomaterials6,7 such as two-dimensional (2D) materials despite their unique functionalities7-10. Here we demonstrate (1) wafer-scale and monolithic two-tier 3D integration based on MoS2 with more than 10,000 field-effect transistors (FETs) in each tier; (2) three-tier 3D integration based on both MoS2 and WSe2 with about 500 FETs in each tier; and (3) two-tier 3D integration based on 200 scaled MoS2 FETs (channel length, LCH = 45 nm) in each tier. We also realize a 3D circuit and demonstrate multifunctional capabilities, including sensing and storage. We believe that our demonstrations will serve as the foundation for more sophisticated, highly dense and functionally divergent integrated circuits with a larger number of tiers integrated monolithically in the third dimension.

2.
ACS Nano ; 17(16): 15629-15640, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37534591

RESUMO

Substitutionally doped 2D transition metal dichalcogenides are primed for next-generation device applications such as field effect transistors (FET), sensors, and optoelectronic circuits. In this work, we demonstrate substitutional rhenium (Re) doping of MoS2 monolayers with controllable concentrations down to 500 ppm by metal-organic chemical vapor deposition (MOCVD). Surprisingly, we discover that even trace amounts of Re lead to a reduction in sulfur site defect density by 5-10×. Ab initio models indicate the origin of the reduction is an increase in the free-energy of sulfur-vacancy formation at the MoS2 growth-front when Re is introduced. Defect photoluminescence (PL) commonly seen in undoped MOCVD MoS2 is suppressed by 6× at 0.05 atomic percent (at. %) Re and completely quenched with 1 at. % Re. Furthermore, we find that Re-MoS2 transistors exhibit a 2× increase in drain current and carrier mobility compared to undoped MoS2, indicating that sulfur vacancy reduction improves carrier transport in the Re-MoS2. This work provides important insights on how dopants affect 2D semiconductor growth dynamics, which can lead to improved crystal quality and device performance.

3.
ACS Nano ; 17(15): 14449-14460, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490390

RESUMO

Defects play a pivotal role in limiting the performance and reliability of nanoscale devices. Field-effect transistors (FETs) based on atomically thin two-dimensional (2D) semiconductors such as monolayer MoS2 are no exception. Probing defect dynamics in 2D FETs is therefore of significant interest. Here, we present a comprehensive insight into various defect dynamics observed in monolayer MoS2 FETs at varying gate biases and temperatures. The measured source-to-drain currents exhibit random telegraph signals (RTS) owing to the transfer of charges between the semiconducting channel and individual defects. Based on the modeled temperature and gate bias dependence, oxygen vacancies or aluminum interstitials are probable defect candidates. Several types of RTSs are observed including anomalous RTS and giant RTS indicating local current crowding effects and rich defect dynamics in monolayer MoS2 FETs. This study explores defect dynamics in large area-grown monolayer MoS2 with ALD-grown Al2O3 as the gate dielectric.

4.
Nano Lett ; 23(8): 3426-3434, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37058411

RESUMO

Two-dimensional (2D) semiconductors possess promise for the development of field-effect transistors (FETs) at the ultimate scaling limit due to their strong gate electrostatics. However, proper FET scaling requires reduction of both channel length (LCH) and contact length (LC), the latter of which has remained a challenge due to increased current crowding at the nanoscale. Here, we investigate Au contacts to monolayer MoS2 FETs with LCH down to 100 nm and LC down to 20 nm to evaluate the impact of contact scaling on FET performance. Au contacts are found to display a ∼2.5× reduction in the ON-current, from 519 to 206 µA/µm, when LC is scaled from 300 to 20 nm. It is our belief that this study is warranted to ensure an accurate representation of contact effects at and beyond the technology nodes currently occupied by silicon.

5.
Nat Commun ; 13(1): 6139, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253370

RESUMO

Artificial neural networks have demonstrated superiority over traditional computing architectures in tasks such as pattern classification and learning. However, they do not measure uncertainty in predictions, and hence they can make wrong predictions with high confidence, which can be detrimental for many mission-critical applications. In contrast, Bayesian neural networks (BNNs) naturally include such uncertainty in their model, as the weights are represented by probability distributions (e.g. Gaussian distribution). Here we introduce three-terminal memtransistors based on two-dimensional (2D) materials, which can emulate both probabilistic synapses as well as reconfigurable neurons. The cycle-to-cycle variation in the programming of the 2D memtransistor is exploited to achieve Gaussian random number generator-based synapses, whereas 2D memtransistor based integrated circuits are used to obtain neurons with hyperbolic tangent and sigmoid activation functions. Finally, memtransistor-based synapses and neurons are combined in a crossbar array architecture to realize a BNN accelerator for a data classification task.


Assuntos
Redes Neurais de Computação , Sinapses , Teorema de Bayes , Neurônios/fisiologia , Sinapses/fisiologia , Incerteza
6.
Small ; 18(33): e2202590, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843869

RESUMO

Atomically thin, 2D, and semiconducting transition metal dichalcogenides (TMDs) are seen as potential candidates for complementary metal oxide semiconductor (CMOS) technology in future nodes. While high-performance field effect transistors (FETs), logic gates, and integrated circuits (ICs) made from n-type TMDs such as MoS2 and WS2 grown at wafer scale have been demonstrated, realizing CMOS electronics necessitates integration of large area p-type semiconductors. Furthermore, the physical separation of memory and logic is a bottleneck of the existing CMOS technology and must be overcome to reduce the energy burden for computation. In this article, the existing limitations are overcome and for the first time, a heterogeneous integration of large area grown n-type MoS2 and p-type vanadium doped WSe2 FETs with non-volatile and analog memory storage capabilities to achieve a non-von Neumann 2D CMOS platform is introduced. This manufacturing process flow allows for precise positioning of n-type and p-type FETs, which is critical for any IC development. Inverters and a simplified 2-input-1-output multiplexers and neuromorphic computing primitives such as Gaussian, sigmoid, and tanh activation functions using this non-von Neumann 2D CMOS platform are also demonstrated. This demonstration shows the feasibility of heterogeneous integration of wafer scale 2D materials.

7.
Nat Commun ; 12(1): 693, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514710

RESUMO

Here we benchmark device-to-device variation in field-effect transistors (FETs) based on monolayer MoS2 and WS2 films grown using metal-organic chemical vapor deposition process. Our study involves 230 MoS2 FETs and 160 WS2 FETs with channel lengths ranging from 5 µm down to 100 nm. We use statistical measures to evaluate key FET performance indicators for benchmarking these two-dimensional (2D) transition metal dichalcogenide (TMD) monolayers against existing literature as well as ultra-thin body Si FETs. Our results show consistent performance of 2D FETs across 1 × 1 cm2 chips owing to high quality and uniform growth of these TMDs followed by clean transfer onto device substrates. We are able to demonstrate record high carrier mobility of 33 cm2 V-1 s-1 in WS2 FETs, which is a 1.5X improvement compared to the best reported in the literature. Our experimental demonstrations confirm the technological viability of 2D FETs in future integrated circuits.

8.
Adv Sci (Weinh) ; 7(24): 2001174, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344114

RESUMO

Dilute magnetic semiconductors (DMS), achieved through substitutional doping of spin-polarized transition metals into semiconducting systems, enable experimental modulation of spin dynamics in ways that hold great promise for novel magneto-electric or magneto-optical devices, especially for two-dimensional (2D) systems such as transition metal dichalcogenides that accentuate interactions and activate valley degrees of freedom. Practical applications of 2D magnetism will likely require room-temperature operation, air stability, and (for magnetic semiconductors) the ability to achieve optimal doping levels without dopant aggregation. Here, room-temperature ferromagnetic order obtained in semiconducting vanadium-doped tungsten disulfide monolayers produced by a reliable single-step film sulfidation method across an exceptionally wide range of vanadium concentrations, up to 12 at% with minimal dopant aggregation, is described. These monolayers develop p-type transport as a function of vanadium incorporation and rapidly reach ambipolarity. Ferromagnetism peaks at an intermediate vanadium concentration of ~2 at% and decreases for higher concentrations, which is consistent with quenching due to orbital hybridization at closer vanadium-vanadium spacings, as supported by transmission electron microscopy, magnetometry, and first-principles calculations. Room-temperature 2D-DMS provide a new component to expand the functional scope of van der Waals heterostructures and bring semiconducting magnetic 2D heterostructures into the realm of practical application.

9.
ACS Appl Mater Interfaces ; 12(14): 16576-16583, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32180391

RESUMO

Transition-metal dichalcogenides (TMDCs) with atomic thickness are promising materials for next-generation electronic and optoelectronic devices. Herein, we report uniform growth of triangular-shaped (∼40 µm) monolayer WS2 using the atmospheric-pressure chemical vapor deposition (APCVD) technique in a hydrogen-free environment. We have studied the optical and electrical behaviors of as-grown WS2 samples. The absorption spectrum of monolayer WS2 shows two intense excitonic absorption peaks, namely, A (∼630 nm) and B (∼530 nm), due to the direct gap transitions at the K point. Photoluminescence (PL) and fluorescence studies reveal that under the exposure of green light, monolayer WS2 gives very strong red emission at ∼663 nm. This corresponds to the direct band gap and strong excitonic effect in monolayer WS2. Furthermore, the efficacy of the synthesized WS2 crystals for electronic devices is also checked by fabricating field-effect transistors (FETs). FET devices exhibit an electron mobility of µ ∼ 6 cm2 V-1 s-1, current ON/OFF ratio of ∼106, and subthreshold swing (SS) of ∼641 mV decade-1, which are comparable to those of the exfoliated monolayer WS2 FETs. These findings suggest that our APCVD-grown WS2 has the potential to be used for next-generation nanoelectronic and optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...