Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25201, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38371995

RESUMO

Contaminated fomites can lead to hepatitis A virus (HAV) and human norovirus (HuNoV) disease outbreaks. Improved decontamination methods that are user-friendly, cost-effective, and waterless are being researched for sustainability. Traditional ultraviolet light (UV-C) technologies though effective for surface decontamination have drawbacks, using mercury lamps, that pose user-safety risk and environmental hazards. Therefore, UV-C light emitting diode (LED) systems are being designed for delivering required antiviral doses. The objective of this research was to determine the ability of UV-C LED (279 nm) systems to inactivate HuNoV surrogates, feline calicivirus (FCV-F9) and Tulane virus (TV), and HAV on Formica coupons in comparison to UV-C (254 nm) systems. FCV-F9 (∼6 log PFU/mL), TV (∼7 log PFU/mL), or HAV (∼6 log PFU/mL) at 100 µL were surface-spread on sterile Formica coupons (3 × 3 cm2), air-dried, and treated for up to 2.5 min with both systems. Each experiment was replicated thrice. Recovered infectious plaque counts were statistically analyzed using mixed model analysis of variance. FCV-F9, TV, and HAV showed D10 values of 23.37 ± 0.91 mJ/cm2, 16.32 ± 3.6 mJ/cm2, and 12.39 ± 0.70 mJ/cm2 using 279 nm UV-C LED, respectively and D10 values of 9.97 ± 2.44 mJ/cm2, 6.83 ± 1.13 mJ/cm2 and 12.40 ± 1.15 mJ/cm2, respectively with 254 nm UV-C. Higher 279 nm UV-C LED doses were required to cause HuNoV surrogate reduction than 254 nm UV-C, except similar doses with both systems were needed for HAV inactivation on Formica surfaces. It remains critical to measure UV intensity of optical sources and optimize exposure times for desired log reduction on surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...