Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 67(8): 2277-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26873978

RESUMO

We previously demonstrated that the oxylipin 12-oxo-phytodienoic acid (OPDA) acts along with abscisic acid to regulate seed germination in Arabidopsis thaliana, but the mechanistic details of this synergistic interaction remain to be elucidated. Here, we show that OPDA acts through the germination inhibition effects of abscisic acid, the abscisic acid-sensing ABI5 protein, and the gibberellin-sensing RGL2 DELLA protein. We further demonstrate that OPDA also acts through another dormancy-promoting factor, MOTHER-OF-FT-AND-TFL1 (MFT). Both abscisic acid and MFT positively feed back into the OPDA pathway by promoting its accumulation. These results confirm the central role of OPDA in regulating seed dormancy and germination in A. thaliana and underline the complexity of interactions between OPDA and other dormancy-promoting factors such as abscisic acid, RGL2, and MFT.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Ácidos Graxos Insaturados/farmacologia , Germinação/efeitos dos fármacos , Dormência de Plantas/efeitos dos fármacos , Ácido Abscísico/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Biológicos , Mutação/genética , Oxilipinas/metabolismo , Ligação Proteica/efeitos dos fármacos
2.
Plant Cell Physiol ; 51(9): 1488-98, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20813832

RESUMO

When leaves are exposed to low temperature, sugars accumulate and transcription factors in the C-repeat binding factor (CBF) family are expressed, which, together with CBF-independent pathways, are known to contribute to the cold acclimation process and an increase in freezing tolerance. What is not known, however, is whether expression of these cold-regulated genes can be induced systemically in response to a localized cold treatment. To address this, pre-existing, mature leaves of warm-grown Arabidopsis thaliana were exposed to a localized cold treatment (near 10 °C) whilst conjoined newly developing leaves continued only to experience warmer temperatures. In initial experiments on wild-type A. thaliana (Col-0) using real-time reverse transcription--PCR (RT-PCR) we observed that some genes--including CBF genes, certain downstream cold-responsive (COR) targets and CBF-independent transcription factors--respond to a direct 9 °C treatment of whole plants. In subsequent experiments, we found that the treatment of expanded leaves with temperatures near 10 °C can induce cold-associated genes in conjoined warm-maintained tissues. CBF1 showed a particularly strong systemic response, although CBF-independent transcription factors also responded. Moreover, the localized cold treatment of A. thaliana (C24) plants with a luciferase reporter fused to the promoter region of KIN2 indicated that in warm-maintained leaves, KIN2 might respond to a systemic signal from remote, directly cold-treated leaves. Collectively, our study provides strong evidence that the processes involved in cold acclimation are partially mediated by a signal that acts systemically. This has the potential to act as an early-warning system to enable developing leaves to cope better with the cold environment in which they are growing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Temperatura Baixa , Transdução de Sinais , Transativadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...