Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pol J Microbiol ; 67(4): 441-454, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30550230

RESUMO

Paeonia ostii is known for its excellent medicinal values as Chinese traditional plant. To date, the diversity of culturable endophytes associated with P. ostii is in its initial phase of exploration. In this study, 56 endophytic bacteria and 51 endophytic fungi were isolated from P. ostii roots in China. Subsequent characterization of 56 bacterial strains by 16S rDNA gene sequence analysis revealed that nine families and 13 different genera were represented. All the fungal strains were classed into six families and 12 genera based on ITS gene sequence. The biosynthetic potential of all the endophytes was further investigated by the detection of putative polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes. The PCR screens were successful in targeting thirteen bacterial PKS, five bacterial NRPS, ten fungal PKS and nine fungal NRPS gene fragments. Bioinformatic analysis of these detected endophyte gene fragments facilitated inference of the potential bioactivity of endophyte bioactive products, suggesting that the isolated endophytes are capable of producing a plethora of secondary metabolites. These results suggest that endophytes isolated from P. ostii had abundant population diversity and biosynthetic potential, which further proved that endophytes are valuable reservoirs of novel bioactive compounds.Paeonia ostii is known for its excellent medicinal values as Chinese traditional plant. To date, the diversity of culturable endophytes associated with P. ostii is in its initial phase of exploration. In this study, 56 endophytic bacteria and 51 endophytic fungi were isolated from P. ostii roots in China. Subsequent characterization of 56 bacterial strains by 16S rDNA gene sequence analysis revealed that nine families and 13 different genera were represented. All the fungal strains were classed into six families and 12 genera based on ITS gene sequence. The biosynthetic potential of all the endophytes was further investigated by the detection of putative polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes. The PCR screens were successful in targeting thirteen bacterial PKS, five bacterial NRPS, ten fungal PKS and nine fungal NRPS gene fragments. Bioinformatic analysis of these detected endophyte gene fragments facilitated inference of the potential bioactivity of endophyte bioactive products, suggesting that the isolated endophytes are capable of producing a plethora of secondary metabolites. These results suggest that endophytes isolated from P. ostii had abundant population diversity and biosynthetic potential, which further proved that endophytes are valuable reservoirs of novel bioactive compounds.


Assuntos
Bactérias/classificação , Endófitos/classificação , Fungos/classificação , Variação Genética , Paeonia/microbiologia , Bactérias/isolamento & purificação , China , DNA Bacteriano/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Endófitos/metabolismo , Fungos/isolamento & purificação , Peptídeo Sintases/genética , Filogenia , Raízes de Plantas/microbiologia , Plantas Medicinais/microbiologia , Policetídeo Sintases/genética , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...