Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 362: 142737, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950747

RESUMO

Recently, phytoremediation has been regarded as a green and environment friendly technique to treat metals contaminated soils. Thus, in this study, pot experiments were designed to investigate the combine effects of biochar and magnesium (MPs) to purify cadmium (Cd)-contaminated soils by Medicago sativa L. (alfalfa). The results showed that the combined use of biochar and Mg significantly increased the accumulation of Cd and promoted the transport of Cd from root to shoot in alfalfa, simultaneously. Importantly, the combined use of biochar and Mg could increase the accumulation of Cd in shoot and whole plant (shoot + root) of alfalfa up-to 59.1% and 23.1%, respectively. Moreover, the enhancement mechanism can be analyzed from several aspects. Firstly, the photosynthesis was enhanced, which was beneficial to plant growth. The product of photosynthesis provided energy for uptake and transport of Cd. Meanwhile, its transport in phloem could promote the transport of Cd. Secondly, the enhancement of antioxidant capacity of alfalfa effectively protected the membrane structure of alfalfa, which indicated that Cd could enter alfalfa from the channel on the cell membrane. Lastly, the chemical form of Cd and microbial community structure in soil were changed. Overall, these changes reduced the Cd toxicity in soil, enhanced the resistance capability of alfalfa, increased the Cd uptake by alfalfa and promoted the growth of alfalfa. Thus, the obtained results suggested that the combined use of biochar and Mg is an effective approach to enhance phytoremediation performance for purifying Cd-contaminated soils.

2.
Int J Biol Macromol ; 266(Pt 2): 131312, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582471

RESUMO

Sodium alginate (SA) biopolymer has been recognized as an efficient adsorbent material owing to their unique characteristics, including biodegradability, non-toxic nature, and presence of abundant hydrophilic functional groups. Accordingly, in the current research work, UiO-66-OH and UiO-66-(OH)2 metal organic framework (MOF) nanoparticles (NPs) have been integrated into SA biopolymer-based three-dimensional (3-D) membrane capsules (MCs) via a simple and facile approach to remove toxic metal cations (Cu2+ and Cd2+) from water and real sewage. The newly configured capsules were characterized by FTIR, SEM, XRD, EDX and XPS analyses techniques. Exceptional sorption properties of the as-developed capsules were ensured by evaluation of the pertinent operational parameters, i.e., contents of MOF-NPs (1-100 wt%), adsorbent dosage (0.001-0.05 g), content time (0-360 h), pH (1-8), initial concentration of metal cations (5-1000 mg/L) and reaction temperature (298.15-333.15 K) on the eradication of Cu2+ and Cd2+ metal cations. It was found that hydrophilic functional groups (-OH and -COOH) have performed an imperative role in the smooth loading of MOF-NPs into 3-D membrane capsules via intra/inter-molecular hydrogen bonding and van der waals potencies. The maximum monolayer uptake capacities (as calculated by the Langmuir isotherm model) of Cd2+ and Cu2+ by 3-D SGMMCs-OH were 940 and 1150 mg/g, respectively, and by 3-D SGMMCs-(OH)2 were 1375 and 1575 mg/g, respectively, under optimum conditions. The as-developed capsules have demonstrated superior selectivity against targeted metal cations under designated pH and maintained >80 % removal efficiency up to six consecutive treatment cycles. Removal mechanisms of metal cations by the 3-D SGMMCs-OH/(OH)2 was proposed, and electrostatic interaction, ion-exchange, inner-sphere coordination bonds/interactions, and aromatic ligands exchange were observed to be the key removal mechanisms. Notably, FTIR and XPS analysis indicated that hydroxyl groups of Zr-OH and BDC-OH/(OH)2 aromatic linkers played vital roles in Cu2+ and Cd2+ adsorption by participating in inner-sphere coordination interactions and aromatic ligands exchange mechanisms. The as-prepared capsules indicated >70 % removal efficiency of Cu2+ from real electroplating wastewater in the manifestation of other competitive metal ions and pollutants under selected experimental conditions. Thus, it was observed that newly configured 3-D SGMMCs-OH/(OH)2 have offered a valuable discernment into the development of MOFs-based water decontamination 3-D capsules for industrial applications.


Assuntos
Alginatos , Estruturas Metalorgânicas , Esgotos , Poluentes Químicos da Água , Purificação da Água , Alginatos/química , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Purificação da Água/métodos , Biopolímeros/química , Esgotos/química , Cobre/química , Membranas Artificiais , Cápsulas/química , Nanopartículas/química , Cátions/química , Concentração de Íons de Hidrogênio , Cádmio/química , Cádmio/isolamento & purificação , Água/química
3.
Water Res ; 245: 120617, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37738942

RESUMO

Recently, microplastics (MPs) and nanoplastics (NPs) contamination is a worldwide problem owing to the immense usage of plastic commodities. Thus, the environmental risks by MPs and NPs demand the application of innovative, efficient, and sustainable technologies to control the pollution of plastic particles. Regarding this, numerous technologies, including adsorption, coagulation, filtration, bioremediation, chemical precipitation, and photocatalysis, have been engaged to eradicate MPs and NPs from contaminated waters. However, the coagulation technique is getting much attention owing to its simplicity, higher removal performance, low carbon footprint, and low operational and maintenance cost. Therefore, this paper has been designed to critically summarize the recent innovations on the application of coagulation process to eradicate MPs and NPs from both synthetic and real sewage. More importantly, the effect of pertinent factors, including characteristics of coagulants, MPs/NPs, and environmental medium on the elimination performances and mechanisms of MPs/NPs have been critically investigated. Further, the potential of coagulation technology in eliminating MPs and NPs from real sewage has been critically elucidated for the first time, for better execution of this technique at commercial levels. Finally, this critical review also presents current research gaps and future outlooks for the improvement of coagulation process for eradicating MPs and NPs from water and real sewage. Overall, the current review will offer valuable knowledge to scientists in selecting a suitable technique for controlling plastic pollution.

4.
Environ Technol ; 44(15): 2244-2253, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34986738

RESUMO

Microalgae show great potential for nutrient removal from piggery digestate. However, full-strength piggery digestate have been found to severely inhibit microalgal growth. In this study, microalgae were coupled into the electric field (EF)system to form an electric field-microalgae system (EFMS). The effects of EF characteristics and environmental conditions on the growth of Desmodesmus sp. CHX1 and the removal of nitrogen and phosphorus in EFMS were explored. The results indicated that the optimal EF parameters for forming a fine EFMS were electrode of Zn (anode)/graphite (cathode), electric frequency of three times per day (10 min/time) and voltage of 12 V. The suitable light intensity and microalgae inoculation concentration for the EFMS were 180 µmol photons/(m2·s) and 0.2 g/L, respectively. Ammonium nitrogen and total phosphorus removal efficiencies were 65.38% and 96.16% in the piggery digestate by EFMS under optimal conditions. These results indicate that EFMS is a promising technology for nutrient removal from piggery digestate.


Assuntos
Microalgas , Águas Residuárias , Biomassa , Nutrientes , Nitrogênio , Fósforo
5.
Sci Total Environ ; 864: 160907, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36526202

RESUMO

Zero-valent iron (ZVI) materials have been developed and applied to treat various pollutants due to their strong reducing properties and large specific surface area. Red mud contains a large amount of iron oxide and therefore can be used as a source of iron base for the preparation of ZVI materials. Industrial reduction of iron oxides to prepare ZVI materials requires high temperatures resulting in high energy consumption and high costs. Biomass can be pyrolyzed at low temperatures to release large amounts of reducing gas, which can efficiently reduce red mud to obtain ZVI at lower temperatures. Therefore, this paper studied the pyrolysis of five biomasses, corn straw, wheat straw, rice husk, pine wood and coffee grounds, and compared the reduction of iron oxide in red mud at different temperatures for different biomass feedstocks. The results showed that the biomass could reduce most of the iron oxide in red mud to ZVI at 800 °C, which was at least 100 °C lower than the conventional iron reduction temperature. The reducing gas greatly facilitated the conversion of iron oxide to ZVI in this process. Moreover, the material has a good removal effect on both gentian violet and methylene blue. A low-energy and low-cost method was explored for the preparation of ZVI materials, and the resource utilization of biomass and red mud was realized.


Assuntos
Ferro , Poluentes Químicos da Água , Biomassa , Pirólise , Compostos Férricos
6.
Water Res ; 230: 119526, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36577257

RESUMO

Microplastics and nanoplastics are being assumed as emerging toxic pollutants owing to their unique persistent physicochemical attributes, chemical stability, and nonbiodegradable nature. Owing to their possible toxicological impacts (not only on aquatic biota but also on humans), scientific communities are developing innovative technologies to remove microplastics and nanoplastics from polluted waters. Various technologies, including adsorption, coagulation, photocatalysis, bioremediation, and filtration, have been developed and employed to eliminate microplastics and nanoplastics. Recently, adsorption technology has been getting great interest in capturing microplastics and nanoplastics and achieving excellent removal performance. Therefore, this review is designed to discuss recent innovations in developing promising adsorbents for the remediation of microplastics and nanoplastics from wastewater and natural water. The developed adsorbents have been classified into four main classes: sponge/aerogel-based, metal-based, biochar-based, and other developed adsorbents, and their performance efficiencies have been critically examined. Further, the influence of various pertinent factors, including adsorbents' characteristics, microplastics/nanoplastics' characteristics, solution pH, reaction temperature, natural organic matter, and co-existing/interfering ions on the removal performance of advanced adsorbents, have been critically assessed. Importantly, the particle application of the developed adsorbents in removing microplastics and nanoplastics from natural water has been elucidated. In addition, barriers to market penetration of the developed adsorbents are briefly discussed to help experts transfer adsorption-based technology from laboratory-scale to commercial applications. Finally, the current knowledge gaps and future recommendations are highlighted to assist scientific communal for improving adsorption-based technologies to battle against microplastics and nanoplastics pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Poluentes Químicos da Água/análise , Águas Residuárias , Adsorção , Água
7.
Environ Res ; 215(Pt 2): 113945, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36027965

RESUMO

The stability and applicability of UiO-66-(NH2)2 metal-organic framework (MOF) nanoparticles (NPs) were successfully improved in this study by incorporating them into alginate biopolymer during the manifestation of crosslinking agents-calcium chloride and glutaraldehyde-via a simple, environment-friendly, and facile approach to eradicate potentially toxic metals (PTMs) such as Cr6+, Cr3+, Cu2+, and Cd2+ from water and real electroplating wastewater. Hydrophilic functional groups (i.e., -OH, -COOH, and -NH2) are imperative in the smooth loading of UiO-66-(NH2)2 MOF- NPs into three-dimensional (3-D) membrane capsules (MCs). The X-ray photoelectron spectroscopy (XPS) results suggested that UiO-66-(NH2)2 MOF was effectively bonded in/on the capsule via electrostatic crosslinking between -H3N+ and -COO-. Scanning electron microscopy results revealed a porous honeycomb configuration of the 3-D SGMMCs (S: sodium alginate, G: glutaraldehyde, M: MOF NPs, and MCs: membrane capsules). The maximum monolayer absorption capacities for Cr6+, Cr3+, Cu2+, and Cd2+ were 495, 975, 1295, and 1350 mg/g, respectively. The results of Fourier transform infrared spectroscopy and XPS analyses showed that electrostatic attraction and ion exchange were the main processes for PTM removal used by the as-developed 3-D SGMMCs. The as-developed 3-D SGMMCs exhibited outstanding selectivity for removing the targeted PTMs under the specified pH/conditions and maintained >80% removal efficiency for up to six consecutive treatment cycles. Notably, > 60% removal efficiencies for Cr6+ and Cu2+ were observed when treating real electroplating wastewater. Therefore, the as-developed 3-D SGMMCs can be used as an exceptional multifunctional sorbent to remove and recover PTMs from real electroplating wastewater.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Adsorção , Alginatos , Cádmio , Cloreto de Cálcio , Cápsulas , Galvanoplastia , Glutaral , Concentração de Íons de Hidrogênio , Ácidos Ftálicos , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise
8.
Environ Sci Pollut Res Int ; 29(43): 64345-64369, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35849230

RESUMO

Presently, the rapid pace in the discovery of emerging aquatic pollutants is increasing the demand for the remediation and treatment of our natural resources. Regarding this, nanotechnology is being considered the potential solution for contaminated water remediation with techniques such as filtration, adsorption, catalysis, and desalination. For this purpose, zerovalent iron (ZVI) is being widely used in the remediation of environmental pollutants due to its large specific surface area and high reactivity. However, ZVI is easy to agglomerate and oxidize, limiting its application in the real environment. Therefore, the present study was designed to discuss the preparation and characterization methods of ZVI composite materials, factors affecting adsorption, the removal effect, and adsorption mechanism of different pollutants by Fe-C materials because the optimization and modification of nano-zero-valent iron is a hot research topic nowadays in this field. Moreover, this paper does also analyze the possibility of the practical application prospects of the team's technology for preparing iron-carbon materials. Thus, this information will be helpful for the development and application of Fe-C-based technologies for water and soil remediation and the prediction of the future research direction of Fe-C composite materials.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Adsorção , Carbono , Ferro , Solo , Água , Poluentes Químicos da Água/análise
9.
Exp Cell Res ; 417(2): 113225, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35644414

RESUMO

Malignancies including ovarian cancer (OvCa) are genetically unstable. Genomic integrity is maintained by tumor suppressor p53 and DNA damage response network, which crosstalk to each other via not well characterized mechanisms. In this work, we characterize features of damage-related signals in cultured epithelial OvCa cells and tumor biopsies. We found that endogenous burden of DNA damage in OvCa tissues were ubiquitously accumulated in high-grade malignancies than lower grade of cancer that cannot be obviously explained by disturbed function of in DNA damage response (DDR). In contrast, CHK1 phosphorylation (CHK1-pS345) marking the checkpoint activation in nucleolar compartments are prevalent in high-grade OvCa, coincident to the elevated DNA damage in nucleoplasm. Generation of CHK1-pS345 requires the presence of p53 protein in addition to the well-known activities of ATM/ATR kinases. Apparently, mutant forms of p53 possess higher activity in triggering CHK1 phosphorylation than wild type, implying a potential role of p53 in maintaining rDNA integrity. Loss of p53 function would cause replication stress in nucleoli. Altogether, our study reveals endogenous nucleoli stress in OvCa that is coupled to perturbed function of p53 in DNA repair.


Assuntos
Neoplasias Ovarianas , Proteína Supressora de Tumor p53 , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma Epitelial do Ovário/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA/genética , Feminino , Humanos , Neoplasias Ovarianas/genética , Fosforilação , Proteínas Quinases/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Int J Phytoremediation ; 24(13): 1418-1430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35148204

RESUMO

Currently, the occurrence of toxic levels of metals in soils is a serious environmental issue worldwide. Phytoremediation is getting much attention to control metals soil pollution because it is economic and environmentally friendly. However, the methods used to detect metals in plants are not uniform and have depicted poor comparability of the research investigations. Therefore, the present overview is designed to discuss the possible chemical forms of metals in various environmental matrixes and the detection methods employed to identify the chemical forms of metals in plants. Moreover, the in situ and indirect methods to detect metals in plants have also been discussed herein. In addition, the pros and cons of the available techniques have also been critically analyzed and discussed. Finally, key points/challenges and future perspectives of these methods have been highlighted for the scientific community.Novelty statementIn the current review, the possible chemical forms of metals in various environmental matrixes are discussed in detail. Various extraction agents and their efficiency for extracting metals from plants have been clearly illustrated. Further, all the available methods for analyzing the chemical forms of metals in plants have been compared.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Plantas , Solo
11.
Bioresour Technol ; 347: 126668, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34998925

RESUMO

Microalgae technology is a promising method for treating piggery digestate, while its removal ability of humic acids (HAs) is poor. Here, an electric field-microalgae system (EFMS) was used to improve the removal of HAs from the piggery digestate. Results indicated that the removal of HAs by EFMS relied on the initial concentration of HAs, electrical intensity, the initial inoculation concentration of microalgae and pH. Values of these parameters were optimized as electrical intensity of 1.2 V/cm, microalgae initial inoculation concentration of 0.1 g/L and pH 5.0. The HAs removal efficiency by EFMS (55.38%) was 13% and 38% higher than that by single electric field and microalgal technology. It was observed that oxidation, coagulation and assimilation contributed to the removal of HAs, suggesting that EFMS could serve as an attractive and cost-effective technique for the removal of HAs from the piggery digestate.


Assuntos
Microalgas , Biomassa , Substâncias Húmicas , Nitrogênio , Fósforo , Águas Residuárias/análise
12.
Chemosphere ; 293: 133658, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35051513

RESUMO

Chinese medicine residues (CMRs) have always been considered difficult to realize resource treatment because of the possible residual heavy metals (HMs). In this study, CMRs containing HMs (Cu, Cd and Pb) were pyrolized in the tube furnace and the solar pyrolysis equipment. The ratio of HMs entering the pyrolysis products (bio-gas, bio-oil and bio-char) and the stability of HMs in biochar were analyzed. A comparative analysis showed that the less volatile HMs were basically concentrated in the biochar after the pyrolysis treatment, indicating that pyrolysis could enrich the HMs in the biochar. The leaching experiments showed that the leaching rates of Cu, Cd and Pb from biochar were 0-0.41%, 0-3.03% and 0.09-0.86% respectively, while the leaching rates of CMR were as high as 18.85, 10.98 and 2.52%, indicating that the pyrolysis process could improve the fixation effect of HMs in biomass to a greater extent and reduce the leaching toxicity of HMs. Compared with the traditional pyrolysis method, the solar pyrolysis had the same effect on the enrichment and stabilization of heavy metals in CMRs, which means that it is possible to realize the resource treatment of CMR through a renewable green energy (solar energy).


Assuntos
Metais Pesados , Pirólise , Carvão Vegetal , Medicina Tradicional Chinesa , Metais Pesados/química
13.
Chemosphere ; 286(Pt 2): 131721, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34352550

RESUMO

The discharge of chromium (Cr) contaminated wastewater is creating a serious threat to aquatic environment due to the rapid pace in agricultural and industrial activities. Particularly, the long-term exposure of Cr(VI) polluted wastewater to the environment is causing serious harm to human health. Therefore, the treatment of Cr(VI) contaminated wastewater is demanding widespread attention. Regarding this, the bioremediation is being considered as a reliable and feasible option to handle Cr(VI) contaminated wastewater because of having low technical investment and operating costs. However, certain factors such as loss of microorganisms, toxicity to microorganisms and uneven microbial growth cycle in the presence of high concentrations of Cr(VI) are hindering its commercial applications. Regarding this, microbial immobilization technology (MIT) is getting great research interest because it could overcome the shortcomings of bioremediation technology's poor tolerance against Cr. Therefore, this review is the first attempt to emphases recent research developments in the remediation of Cr(VI) contamination via MIT. Starting from the selection of immobilized carrier, the present review is designed to critically discuss the various microbial immobilizing methods i.e., adsorption, embedding, covalent binding and medium interception. Further, the mechanism of Cr(VI) removal by immobilized microorganism has also been explored, precisely. In addition, three kinds of microorganism immobilization devices have been critically examined. Finally, knowledge gaps/key challenges and future perspectives are also discussed that would be helpful for the experts in improving MIT for the remediation of Cr(VI) contamination.


Assuntos
Cromo , Águas Residuárias , Biodegradação Ambiental , Cromo/análise , Humanos , Tecnologia
14.
J Hazard Mater ; 424(Pt C): 127542, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740162

RESUMO

Chromium (Cr), especially in forms of hexavalent chromium (Cr(VI)) remains a serious threat to public health and environmental safety for its high toxicity. Herein, two types of iron-modification methods adopting co-pyrolysis and surface-deposition respectively were carried out to prepare active Fe-biochar composites (FeBC) for Cr(VI) removal in the simulated groundwater environment. The systematic characterization demonstrated that larger BET surface area and diversified iron oxides of FeBC-1 obtained from the co-pyrolysis method contributed to higher adsorption and reduction activity towards Cr(VI) degradation in comparison with FeBC-2 produced from surface-deposition method. Further, FeO was evidenced to be a main active component for transforming Cr(VI) to lower-toxicity Cr(III) uniting XRD and XPS analysis. Also, the designed batch experiments aiming at deeper clarifying FeBC-1 revealed that the pseudo-second-order kinetic and intra-particle diffusion model could well describe the Cr(VI) sorption behaviors, suggesting that a single-layer, chemical adsorption process as well as internal particle diffusion both controlled the removal process of Cr(VI) using FeBC-1. Finally, the stability experiments stated that FeBC-1 was basically stable at acidic and neutral conditions. Thus, it was found that co-pyrolysis of FeBC-1 is a potential technology for Cr(VI) remediation.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cromo/análise , Elétrons , Ferro , Cinética , Óxidos , Poluentes Químicos da Água/análise
15.
Int J Phytoremediation ; 24(3): 293-300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34154481

RESUMO

In this study, a novel extraction and safety evaluation method for heavy metals based on different functions of plants was proposed, and an edible plant (pea) was used as the research material to explore the feasibility of the novel method. Pea sprouts were cultured in cadmium (Cd) concentrations of 0, 1.0, 3.0, and 5.0 mg L-1, respectively. The Cd in pea sprouts was continuously extracted with 100 °C distilled water, 60% ethanol, 6% acetic acid, and simulated gastric juice. It was observed that highest amount of Cd (48.65-58.87%) was found in the extraction of roots with 6% acetic acid, followed by 100 °C distilled water (28.68-37.61%). While in stems, most of the Cd (70.73-85.39%) was extracted by 6% acetic acid. The recovery rate of the sequential chemical extraction technique employed in this experiment was between 93 and 106%. Compared with traditional methods, this study has its development potential in two aspects. First, it can determine which steps of sequential extractions of heavy metals in plants are the most harmful to humans. Secondly, corresponding measures can be taken to reduce heavy metals in vegetables used daily, such as soaking edible vegetables in vinegar for a short time. Novelty statement: In this study, a novel extraction and safety evaluation method for heavy metals based on different functions of plants was proposed, and an edible plant (pea) was used as the research material to explore the feasibility of the novel method. Compared with the commonly used extraction methods, the novel method is more reasonable and has greater development potential.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Humanos , Metais Pesados/análise , Pisum sativum , Medição de Risco , Plântula/química , Poluentes do Solo/análise
16.
Chemosphere ; 291(Pt 3): 132979, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34801572

RESUMO

Phytoremediation is an effective, green and economical technique. Different types of phytoremediation methods can be used for the reduction of heavy metal contaminations, such as phytoextraction, phytovolatilization, phytostabilization and phytofiltration. The biomass of plants and the bioavailability of heavy metals in soil are the key factors affecting the efficiency of phytoremediation. It's worth noting that the low remediation efficiency and the lack of effective disposal methods for contaminated biomass have limited its development and application. At present, biological, physical, chemical, agronomic and genetic approaches have been used to enhance phytoremediation. Disposal methods of contaminated biomass usually include pyrolysis, incineration, composting and compaction. They are effective, but are costly and have security problems. Improper disposal of contaminated biomass can lead to leaching of heavy metals. The leaching possibility of different forms of heavy metal in plants is different. Hence, it has great significance to explore the different forms of heavy metals in plants which can help to explore appropriate disposal methods. According to the challenges of phytoremediation, we put forward some views and recommendations for the sustainable and rapid development of phytoremediation technology.


Assuntos
Compostagem , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Metais Pesados/análise , Solo , Poluentes do Solo/análise
17.
Environ Pollut ; 293: 118565, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34822943

RESUMO

Fe-based catalysts as low-cost, high-efficiency, and non-toxic materials display superior catalytic performances in activating hydrogen peroxide, persulfate (PS), peracetic acid (PAA), percarbonate (PC), and ozone to degrade organic contaminants in aqueous solutions. They mainly include ferrous salts, zero-valent iron, iron-metal composites, iron sulfides, iron oxyhydroxides, iron oxides, and supported iron-based catalysts, which have been widely applied in advanced oxidation processes (AOPs). However, there is lack of a comprehensive review systematically reporting their synthesis, characterization, and applications. It is imperative to evaluate the catalytic performances of various Fe-based catalysts in diverse AOPs systems and reveal the activation mechanisms of different oxidants by Fe-based catalysts. This work detailedly summarizes the synthesis methods and characterization technologies of Fe-based catalysts. This paper critically evaluates the catalytic performances of Fe-based catalysts in diverse AOPs systems. The effects of solution pH, reaction temperature, coexisting ions, oxidant concentration, catalyst dosage, and external energy on the degradation of organic contaminants in the Fe-based catalyst/oxidant systems and the stability of Fe-based catalysts are also discussed. The activation mechanisms of various oxidants and the degradation pathways of organic contaminants in the Fe-based catalyst/oxidant systems are revealed by a series of novel detection methods and characterization technologies. Future research prospects on the potential preparation means of Fe-based catalysts, practical applications, assistive technologies, and impact in AOPs are proposed.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Catálise , Peróxido de Hidrogênio , Oxirredução , Poluentes Químicos da Água/análise
18.
Water Sci Technol ; 84(9): 2304-2317, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34810313

RESUMO

Activated carbon has been widely used to remove hazardous Cr(VI); however, the impact of Cr2O3 precipitate on gradually declining removal ability as pH increases has received little attention. Herein, to investigate the effect of Cr2O3, SEM-EDX (scanning electron microscope-energy dispersive X-ray analysis) coupling elements mapping of chromium-loaded powdered activated carbon (PAC) revealed that a chromium layer was formed on the PAC exterior after being treated with Cr(VI) at pH 7. XPS (X-ray photoelectron spectroscopy) study confirmed that 69.93% and 39.91% Cr2O3 precipitated on the PAC surface at pH 7 and pH 3, respectively, corresponding to 17.77 mg/g and 20 mg/g removal capacity. Exhausted PAC had a removal efficiency of 92.43% after Cr2O3 being washed by H2SO4 solution, which was much higher than the removal efficiency of 51.27 % after NaOH washing. This further verified that the intrinsically developed Cr2O3 precipitate on PAC under neutral conditions limited the durability of PAC as an adsorbent. Consecutive elution assessments confirmed that adsorption and reduction ability both declined as pH increased. Raman spectroscopy and C 1s spectra of materials demonstrated two distinct Cr(VI) removal mechanisms under pH 3 and pH 7. In conclusion, the exhausted AC after Cr(VI) adsorption can be rejuvenated after the surface coated Cr2O3 is washed by the acid solution, which can expand the longevity of AC and recover Cr(III).


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
19.
Clin Case Rep ; 9(4): 2032-2035, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33936635

RESUMO

Pregnancy may aggravate myelodysplastic syndrome. Cross-matched platelets can be used in cases of refractory thrombocytopenia. Vaginal delivery can be attempted if the platelet count is at least 20 × 109/L.

20.
Environ Res ; 197: 111151, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33844973

RESUMO

To enhance the inferior removal capability of aqueous Cr(VI) by commercial activated carbon under neutral conditions. The emerging ball milling technology was employed and the removal efficiency of Cr(VI) by ball-milled highly activated carbon (HAC) increased from 68.3% to 99.0% under pH 6 and from 42.7% to 77.8% under pH 7 compared to pristine activated carbon (AC), respectively. Raman spectra and Boehm's titration results signified that the enhanced Cr(VI) removal performance of HAC under neutral conditions was associated with the enriched surface acid functional groups, in which the content of COOH groups increased from 0.31 mmol/g to 0.97 mmol/g. Two Cr(VI) removal mechanisms were proposed established on the acid and alkalic solution washed chromium-loaded HAC, involving the reduction of Cr(VI) to Cr(III) subsequently accompany with the formation of chromium hydroxides on the surface and inside the pores of HAC, and the bonding of CrO42- on the surface COOH groups, as confirmed by SEM-EDX element mapping and specific surface area and porosity measurements. The Pseudo-second order model and Freundlich model fitted the adsorption kinetic and isotherm of AC and HAC well severally, suggesting that the specific interaction of Cr(VI) with the HAC surface and the Cr(VI) removal was multi-layer adsorption. Thermodynamic study exhibited the spontaneity of Cr(VI) removal on ball-milled HAC was increased. Reusability and regeneration studies of HAC denoted the potential application on Cr(VI) uptake under neutral conditions.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...