Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 924: 171676, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479535

RESUMO

Typhoons can induce variations in hydrodynamic conditions and biogeochemical processes, potentially escalating the risk of algal bloom occurrences impacting coastal ecosystems. However, the impacts of typhoons on instantaneous changes and the mechanisms behind typhoon-induced algal blooms remain poorly understood. This study utilized high-frequency in situ observation and machine learning model to track the dynamic variations in meteorological, hydrological, physicochemical, and Chlorophyll-a (Chl-a) levels through the complete Typhoon Talim landing in Zhanjiang Bay (ZJB) in July 2023. The results showed that a delayed onset of algal bloom occurring 10 days after typhoon's arrival. Subsequently, as temperatures reached a suitable range, with an ample supply of nutrients and water stability, Chl-a peaked at 121.49 µg L-1 in algal bloom period. Additionally, water temperature and air temperature decreased by 1.61 °C and 2.8 °C during the typhoon, respectively. In addition, wind speed and flow speed increased by 1.34 and 0.015 m s-1 h-1 to peak values, respectively. Moreover, the slow decline of 8.2 % in salinity suggested a substantial freshwater input, leading to an increase in nutrients. For instance, the mean DIN and DIP were 2.2 and 8.5 times higher than those of the pre-typhoon period, resulting in a decrease in DIN/DIP (closer to16) and the alleviation of P limitation. Furthermore, pH and dissolved oxygen (DO) were both low during the typhoon period and then peaked at 8.93 and 19.05 mg L-1 during the algal bloom period, respectively, but subsequently decreased, remaining lower than those of the pre-typhoon period. A preliminary learning machine model was established to predict Chl-a and exhibited good accuracy, with R2 of 0.73. This study revealed the mechanisms of eutrophication status formation and algal blooms occurrence in the coastal waters, providing insights into the effects of typhoon events on tropical coastal biogeochemistry and ecology.


Assuntos
Tempestades Ciclônicas , Ecossistema , Hidrologia , Baías , Eutrofização , Nutrientes , China , Água
2.
Mar Pollut Bull ; 199: 116015, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217917

RESUMO

Understanding the influence of terrestrial inputs on heavy metals in bays is crucial for the environmental protection of regional estuaries and coastal systems. In this study, the concentrations, temporal and regional distribution characteristics, and fluxes of heavy metals (Cr, Cu, Zn, Cd, Pb) in the surface seawater and terrestrial sewage of Zhanjiang Bay (ZJB) in four different seasons were investigated. The results identified the heavy metal concentrations in the sewage outlet around ZJB had significant seasonal variation. The heavy metals in the surface seawater of ZJB had significant spatiotemporal variations. Terrestrial input, biological activity and hydrodynamics affected the overall distribution. The heavy metal emission fluxes indicated that riverine input was the main influencing factor for heavy metals in ZJB (96.22 %). The fluxes of heavy metals into ZJB increased significantly after the typhoon (Cu: 127 %, Zn: 63 %, Pb: 136 %), it was possible to deteriorate the seawater quality.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Baías , Esgotos , Chumbo , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , China , Sedimentos Geológicos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...