Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mass Spectrom ; 390: 49-55, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27275130

RESUMO

The mechanisms of electron capture and electron transfer dissociation (ECD and ETD) are investigated by covalently attaching a free-radical hydrogen atom scavenger to a peptide. The 2,2,6,6-tetramethylpiperidin-l-oxyl (TEMPO) radical was chosen as the scavenger due to its high hydrogen atom affinity (ca. 280 kJ/mol) and low electron affinity (ca. 0.45 ev), and was derivatized to the model peptide, FQXTEMPOEEQQQTEDELQDK. The XTEMPO residue represents a cysteinyl residue derivatized with an acetamido-TEMPO group. The acetamide group without TEMPO was also examined as a control. The gas phase proton affinity (882 kJ/mol) of TEMPO is similar to backbone amide carbonyls (889 kJ/mol), minimizing perturbation to internal solvation and sites of protonation of the derivatized peptides. Collision induced dissociation (CID) of the TEMPO tagged peptide dication generated stable odd-electron b and y type ions without indication of any TEMPO radical induced fragmentation initiated by hydrogen abstraction. The type and abundance of fragment ions observed in the CID spectra of the TEMPO and acetamide tagged peptides are very similar. However, ECD of the TEMPO labeled peptide dication yielded no backbone cleavage. We propose that a labile hydrogen atom in the charge reduced radical ions is scavenged by the TEMPO radical moiety, resulting in inhibition of N-Cα backbone cleavage processes. Supplemental activation after electron attachment (ETcaD) and CID of the charge-reduced precursor ion generated by electron transfer of the TEMPO tagged peptide dication produced a series of b + H (bH) and y + H (yH) ions along with some c ions having suppressed intensities, consistent with stable O-H bond formation at the TEMPO group. In summary, the results indicate that ECD and ETD backbone cleavage processes are inhibited by scavenging of a labile hydrogen atom by the localized TEMPO radical moiety. This observation supports the conjecture that ECD and ETD processes involve long-lived intermediates formed by electron capture/transfer in which a labile hydrogen atom is present and plays a key role with low energy processes leading to c and z ion formation. Ab initio and density functional calculations are performed to support our conclusion, which depends most importantly on the proton affinity, electron affinity and hydrogen atom affinity of the TEMPO moiety.

2.
Anal Chem ; 82(23): 9932-7, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21058643

RESUMO

Localized heating of droplets on an electrowetting-on-dielectric (EWOD) chip has been implemented and shown to accelerate trypsin digestion reaction rates, sample drying, and matrix crystallization for matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Achieving this involved extending the functionality of previous EWOD droplet-based techniques by developing a multifunctional electrode with closed-loop temperature control, while minimizing overall system complexity and addressing challenges associated with rapid evaporation. For the EWOD chip design, we discuss the performance of multifunctional surface electrodes for actuation, localized Joule heating, and thermistic temperature sensing. Furthermore, a hydrophilic pattern is formed in the multifunctional electrode to control the location of an evaporating droplet on the electrode. To demonstrate the capabilities and limitations of this technique, we performed three experiments and measured the results using MALDI-MS: (i) insulin disulfide reductions in dithiothreitol (DTT) over a range of heater temperatures (22-70 °C) to show how reaction rates can be affected by thermal control, (ii) insulin disulfide reductions at 130 °C in dimethyl sulfoxide (DMSO) to demonstrate a reaction in a high boiling point solvent, and (iii) tryptic digestions of cytochrome c at 22 and 40 °C to show that heated droplets can yield reasonably higher peptide sequence coverage than unheated droplets. Although they do not decouple the effects of changing temperatures and concentrations, these experiments verified that thermal cycling by EWOD electrodes accelerates reaction rates in liquid droplets in air.


Assuntos
Citocromos c/metabolismo , Insulina/química , Técnicas Analíticas Microfluídicas/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Dimetil Sulfóxido/química , Eletrodos , Eletroumectação/métodos , Insulina/metabolismo , Oxirredução , Temperatura , Tripsina/metabolismo
3.
Analyst ; 135(4): 767-72, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20349541

RESUMO

An electrospray-assisted laser desorption/ionization source with an infrared OPO laser (IR-ELDI) was constructed and optimized for peptide and protein mass spectrometry analysis. Similar to ELDI with an ultraviolet laser, IR-ELDI generates multiply charged molecules for peptides and proteins measured under ambient sampling conditions. Both samples in the dried state and analyte solutions can be directly measured by IR-ELDI without the presence of a conventional MALDI matrix. However, the analysis of sample solutions is shown to greatly enhance the sensitivity of the mass spectrometry measurement, as a 100-fold sensitivity gain for peptide measurements was measured. The limit of detection of IR-ELDI was determined to be 250 fmol for bradykinin (1.1 kDa), 100 fmol for ubiquitin (8.6 kDa), and 500 fmol for carbonic anhydrase (29 kDa). IR-ELDI is amenable for MS and MSn analysis for proteins up to 80 kDa transferrin. IR-ELDI-MS may be a useful tool for protein sequencing analysis from complex biological matrices, with minimal sample preparation required.


Assuntos
Lasers , Peptídeos/química , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bradicinina/química , Anidrases Carbônicas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Ubiquitina/química
4.
J Am Soc Mass Spectrom ; 21(1): 127-31, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19854660

RESUMO

The addition of m-nitrobenzyl alcohol (m-NBA) was shown previously (Lomeli et al., J. Am. Soc. Mass Spectrom. 2009, 20, 593-596) to enhance multiple charging of native proteins and noncovalent protein complexes in electrospray ionization (ESI) mass spectra. Additional new reagents have been found to "supercharge" proteins from nondenaturing solutions; several of these reagents are shown to be more effective than m-NBA for increasing positive charging. Using the myoglobin protein-protoporphyrin IX (heme) complex, the following reagents were shown to increase ESI charging: benzyl alcohol, m-nitroacetophenone, m-nitrobenzonitrile, o-NBA, m-NBA, p-NBA, m-nitrophenyl ethanol, sulfolane (tetramethylene sulfone), and m-(trifluoromethyl)-benzyl alcohol. Based on average charge state, sulfolane displayed a greater charge increase (61%) than m-NBA (21%) for myoglobin in aqueous solutions. The reagents that promote higher ESI charging appear to have low solution-phase basicities and relatively low gas-phase basicities, and are less volatile than water. Another feature of mass spectra from some of the active reagents is that adducts are present on higher charge states, suggesting that a mechanism by which proteins acquire additional charge involves direct interaction with the reagent, in addition to other factors such as surface tension and protein denaturation.


Assuntos
Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Tiofenos , Animais , Cavalos , Indicadores e Reagentes/química , Mioglobina/química , Conformação Proteica , Eletricidade Estática , Tiofenos/química
5.
Anal Chem ; 80(18): 6995-7003, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18683952

RESUMO

Electrospray-assisted laser desorption/ionization (ELDI) is a soft ionization method for mass spectrometry (MS) and combines features of both electrospray ionization (ESI) and matrix-assisted laser desorption/ionization to generate ESI-like multiply charged molecules. The ELDI process is based on merging ESI-generated, charged droplets with particles UV laser desorbed from dried or wet sample deposits. We previously reported that ELDI is amenable for MS-based protein identification of large peptides and small proteins using top-down and bottom-up techniques (Peng, I. X.; Shiea, J.; Ogorzalek Loo, R. R.; Loo, J. A. Rapid Commun. Mass Spectrom. 2007, 21, 2541-2546). We have extended our studies by applying collisionally activated dissociation and electron-transfer dissociation MS ( n ) to protein analysis and show that ELDI is capable of multistage MS to MS (4) for top-down characterization of large proteins such as 29 kDa carbonic anhydrase. Multiply charged proteins generated by the ELDI mechanism can be shifted to higher charge by increasing the organic content in the ESI solvent to denature the protein molecules, or by adding m-nitrobenzyl alcohol to the ESI solvent. Furthermore, we introduce "reactive-ELDI", which supports chemical reactions during the ELDI process. Preliminary data for online disulfide bond reduction using dithiothreitol on oxidized glutathione and insulin show reactive-ELDI to be effective. These data provide evidence that the laser-desorbed particles merge with the ESI-generated charge droplets to effect chemical reactions prior to online MS detection. This capability should allow other chemical and enzymatic reactions to be exploited as online protein characterization tools, as well as extending them to flexible, spatially resolved tissue screening and imaging. Also, these reactive-ELDI disulfide reduction experiments enable direct top-down protein identification for proteomic study, side stepping laborious, time-consuming sample preparation steps such as in-solution reduction and alkylation.


Assuntos
Peptídeos/análise , Peptídeos/metabolismo , Proteínas/análise , Proteínas/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Animais , Bovinos , Dissulfetos/química , Ditiotreitol/metabolismo , Transporte de Elétrons , Gases/química , Glutationa/metabolismo , Insulina/metabolismo , Peso Molecular , Compostos Orgânicos/química , Peptídeos/química , Conformação Proteica , Proteínas/química , Análise de Sequência de Proteína , Solventes/química , Espectrometria de Massas em Tandem
6.
Rapid Commun Mass Spectrom ; 21(16): 2541-6, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17639579

RESUMO

We have constructed an electrospray-assisted laser desorption/ionization (ELDI) source which utilizes a nitrogen laser pulse to desorb intact molecules from matrix-containing sample solution droplets, followed by electrospray ionization (ESI) post-ionization. The ELDI source is coupled to a quadrupole ion trap mass spectrometer and allows sampling under ambient conditions. Preliminary data showed that ELDI produces ESI-like multiply charged peptides and proteins up to 29 kDa carbonic anhydrase and 66 kDa bovine albumin from single-protein solutions, as well as from complex digest mixtures. The generated multiply charged polypeptides enable efficient tandem mass spectrometric (MS/MS)-based peptide sequencing. ELDI-MS/MS of protein digests and small intact proteins was performed both by collisionally activated dissociation (CAD) and by nozzle-skimmer dissociation (NSD). ELDI-MS/MS may be a useful tool for protein sequencing analysis and top-down proteomics study, and may complement matrix-assisted laser desorption/ionization (MALDI)-based measurements.


Assuntos
Mapeamento de Peptídeos/instrumentação , Análise de Sequência de Proteína/métodos , Manejo de Espécimes/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Mapeamento de Peptídeos/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Manejo de Espécimes/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...