Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 12: 703688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567066

RESUMO

Flowering is an integral part of the life cycle of flowering plants, which is essential for plant survival and crop production. Most woody fruit trees such as apples and pears bloom in spring, but loquat blooms in autumn and winter. Gibberellin (GA) plays a key role in the regulation of plant flower formation. In this study, we sprayed loquat plants with exogenous GA3, which resulted in vigorous vegetative growth rather than floral bud formation. We then performed a comprehensive RNA-seq analysis on GA3-treated and control-treated leaves and buds over three time periods to observe the effects of exogenous GA3 application on floral initiation and development. The results showed that 111 differentially expressed genes (DEGs) and 563 DEGs were down-regulated, and 151 DEGs and 506 DEGs were up-regulated in buds and leaves, respectively, upon treatment with GA3. Among those that are homologs of the DELLA-mediated GA signal pathway genes, some may be involved in the positive regulation of flower development, including EjWRKY75, EjFT, EjSOC1, EjAGL24, EjSPL, EjLFY, EjFUL, and EjAP1; while some may be involved in the negative regulation of flower development, including EjDELLA, EjMYC3, EjWRKY12, and EjWRKY13. Finally, by analyzing the co-expression of DEGs and key floral genes EjSOC1s, EjLFYs, EjFULs, EjAP1s, 330 candidate genes that may be involved in the regulation of loquat flowering were screened. These genes belong to 74 gene families, including Cyclin_C, Histone, Kinesin, Lipase_GDSL, MYB, P450, Pkinase, Tubulin, and ZF-HD_dimer gene families. These findings provide new insights into the regulation mechanism of loquat flowering.

2.
Physiol Mol Biol Plants ; 27(1): 181-188, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33627970

RESUMO

As tools of plant molecular biology, fluorescence microscopy and Nicotiana benthamiana have been used frequently to study the structure and function of plant cells. However, it is difficult to obtain ideal micrographs; for example, the images are typically unclear, the inner cell structure cannot be observed under a high-power lens by fluorescence microscopy, etc. Here, we describe a method for observing the cell structure of N. benthamiana. This method significantly improves imaging by fluorescence microscopy and allows clear images to be obtained under a high-power lens. This method is easy to perform with good stability, and the stomatal structure, nucleus, nucleolus, chloroplast and other organelles in N. benthamiana cells as well as protein localizations and the locations of protein-protein interactions have been observed clearly. Furthermore, compared with traditional methods, fluorescent dye more efficiently dyes cells with this method. The applicability of this method was verified by performing confocal scanning laser microscopy (CSLM), and CSLM imaging was greatly improved. Thus, our results provided a method to visualize the subcellular structures of live cells in the leaves of N. benthamiana by greatly improving imaging under a fluorescence microscope and provided new insights and references for the study of cell structures and functions in other plants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00931-5.

3.
Front Plant Sci ; 12: 816086, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35035390

RESUMO

Most species in Rosaceae usually need to undergo several years of juvenile phase before the initiation of flowering. After 4-6 years' juvenile phase, cultivated loquat (Eriobotrya japonica), a species in Rosaceae, enters the reproductive phase, blooms in the autumn and sets fruits during the winter. However, the mechanisms of the transition from a seedling to an adult tree remain obscure in loquat. The regulation networks controlling seasonal flowering are also largely unknown. Here, we report two RELATED TO ABI3 AND VP1 (RAV) homologs controlling juvenility and seasonal flowering in loquat. The expressions of EjRAV1/2 were relatively high during the juvenile or vegetative phase and low at the adult or reproductive phase. Overexpression of the two EjRAVs in Arabidopsis prolonged (about threefold) the juvenile period by repressing the expressions of flowering activator genes. Additionally, the transformed plants produced more lateral branches than the wild type plants. Molecular assays revealed that the nucleus localized EjRAVs could bind to the CAACA motif of the promoters of flower signal integrators, EjFT1/2, to repress their expression levels. These findings suggest that EjRAVs play critical roles in maintaining juvenility and repressing flower initiation in the early life cycle of loquat as well as in regulating seasonal flowering. Results from this study not only shed light on the control and maintenance of the juvenile phase, but also provided potential targets for manipulation of flowering time and accelerated breeding in loquat.

4.
Front Plant Sci ; 11: 576, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528491

RESUMO

TERMINAL FLOWER1 (TFL1), a key factor belonging to the phosphatidyl ethanolamine-binding protein (PEBP) family, controls flowering time and inflorescence architecture in some plants. However, the role of TFL1 in loquat remains unknown. In this study, we cloned two TFL1-like genes (EjTFL1-1 and EjTFL1-2) with conserved deduced amino acid sequences from cultivated loquat (Eriobotrya japonica Lindl.). First, we determined that flower bud differentiation occurs at the end of June and early July, and then comprehensively analyzed the temporal and spatial expression patterns of these EjTFL1s during loquat growth and development. We observed the contrasting expression trends for EjTFL1s and EjAP1s (APETALA 1) in shoot apices, and EjTFL1s were mainly expressed in young tissues. In addition, short-day and exogenous GA3 treatments promoted the expression of EjTFL1s, and no flower bud differentiation was observed after these treatments in loquat. Moreover, EjTFL1s were localized to the cytoplasm and nucleus, and both interacted with another flowering transcription factor, EjFD, in the nucleus, and EjTFL1s-EjFD complex significantly repressed the promoter activity of EjAP1-1. The two EjTFL1s were overexpressed in wild-type Arabidopsis thaliana Col-0, which delayed flowering time, promoted stem elongation, increased the number of branches, and also affected flower and silique phenotypes. In conclusion, our results suggested that EjTFL1-1 and EjTFL1-2 do not show the same pattern of expression whereas both are able of inhibiting flower bud differentiation and promoting vegetative growth in loquat by integrating GA3 and photoperiod signals. These findings provide useful clues for analyzing the flowering regulatory network of loquat and provide meaningful references for flowering regulation research of other woody fruit trees.

5.
Int J Mol Sci ; 20(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779080

RESUMO

Flowering plants have evolved different flowering habits to sustain long-term reproduction. Most woody trees experience dormancy and then bloom in the warm spring, but loquat blooms in the cold autumn and winter. To explore its mechanism of flowering regulation, we cloned two SHORT VEGETATIVE PHASE (SVP) homologous genes from 'Jiefanzhong' loquat (Eriobotrya japonica Lindl.), namely, EjSVP1 and EjSVP2. Sequence analysis revealed that the EjSVPs were typical MADS-box transcription factors and exhibited a close genetic relationship with other plant SVP/DORMANCY-ASSOCIATED MADS-BOX (DAM) proteins. The temporal and spatial expression patterns showed that EjSVP1 and EjSVP2 were mainly expressed in the shoot apical meristem (SAM) after the initiation of flowering; after reaching their highest level, they gradually decreased with the development of the flower until they could not be detected. EjSVP1 expression levels were relatively high in young tissues, and EjSVP2 expression levels were relatively high in young to mature transformed tissues. Interestingly, EjSVP2 showed relatively high expression levels in various flower tissues. We analyzed the EjSVP promoter regions and found that they did not contain the C-repeat/dehydration-responsive element. Finally, we overexpressed the EjSVPs in wild-type Arabidopsis thaliana Col-0 and found no significant changes in the number of rosette leaves of Arabidopsis thaliana; however, overexpression of EjSVP2 affected the formation of Arabidopsis thaliana flower organs. In conclusion, EjSVPs were found to play an active role in the development of loquat flowering. These findings may provide a reference for exploring the regulation mechanisms of loquat flowering and the dormancy mechanisms of other plants.


Assuntos
Eriobotrya/fisiologia , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Fatores de Transcrição/genética , Clonagem Molecular , Eriobotrya/genética , Evolução Molecular , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Filogenia , Dormência de Plantas , Proteínas de Plantas/genética , Análise de Sequência de RNA , Distribuição Tecidual
6.
Front Plant Sci ; 10: 253, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930912

RESUMO

The MADS-box transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) integrates environmental and endogenous signals to promote flowering in Arabidopsis. However, the role of SOC1 homologs in regulating flowering time in fruit trees remains unclear. To better understand the molecular mechanism of flowering regulation in loquat (Eriobotrya japonica Lindl.), two SOC1 homologs (EjSOC1-1 and EjSOC1-2) were identified and characterized in this work. Sequence analysis showed that EjSOC1-1 and EjSOC1-2 have conserved MADS-box and K-box domains. EjSOC1-1 and EjSOC1-2 were clearly expressed in vegetative organs, and high expression was detected in flower buds. As observed in paraffin-embedded sections, expression of the downstream flowering genes EjAP1s and EjLFYs started to increase at the end of June, a time when flower bud differentiation occurs. Additionally, high expression of EjSOC1-1 and EjSOC1-2 began 10 days earlier than that of EjAP1s and EjLFYs in shoot apical meristem (SAM). EjSOC1-1 and EjSOC1-2 were inhibited by short-day (SD) conditions and exogenous GA3, and flower bud differentiation did not occur after these treatments. EjSOC1-1 and EjSOC1-2 were found to be localized to the nucleus. Moreover, ectopic overexpression of EjSOC1-1 and EjSOC1-2 in wild-type Arabidopsis promoted early flowering, and overexpression of both was able to rescue the late flowering phenotype of the soc1-2 mutant. In conclusion, the results suggest that cultivated loquat flower bud differentiation in southern China begins in late June to early July and that EjSOC1-1 and EjSOC1-2 participate in the induction of flower initiation. These findings provide new insight into the artificial regulation of flowering time in fruit trees.

7.
Plant Methods ; 15: 7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30705689

RESUMO

BACKGROUND: Loquat (Eriobotrya japonica) is a subtropical tree bearing fruit that ripens during late spring and early summer, which is the off-season for fruit production. The specific flowering habit of loquat, which starts in fall and ends in winter, has attracted an increasing number of researchers who believe that it may represent an ideal model for studying flowering shift adaptations to climate change in Rosaceae. These studies require an understanding of gene expression patterns within the fruit and other tissues of this plant. Although ACTINs (ACTs) have previously been used as reference genes (RGs) for gene expression studies in loquats, a comprehensive analysis of whether these RGs are optimal for normalizing RT-qPCR data has not been performed. RESULTS: In this study, 11 candidate RGs (RIBOSOMAL-LIKE PROTEIN4 (RPL4), RIBOSOMAL-LIKE PROTEIN18 (RPL18), Histone H3.3 (HIS3), Alpha-tubulin-3 (TUA3), S-Adenosyl Methionine Decarboxylase (SAMDC), TIP41-like Family Protein (TIP41), (UDP)-glucose Pyrophosphorylase (UGPase), 18S ribosomal RNA (18S), Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH), Plasma Intrinsic Protein 2 (PIP2) and ACTIN(ACT)) were assessed to determine their expression stability in 23 samples from different tissues or organs of loquat. Integrated expression stability evaluations using five computational statistical methods (GeNorm, NormFinder, ΔCt, BestKeeper, and RefFinder) suggested that a RG set, including RPL4, RPL18, HIS3 and TUA3, was the most stable one across all of the tested loquat samples. The expression pattern of EjCDKB1;2 in the tested loquat tissues normalized to the selected RG set demonstrated its reliability. CONCLUSIONS: This study reveals the reliable RGs for accurate normalization of gene expression in loquat. In addition, our findings demonstrate an efficient system for identifying the most effective RGs for different organs, which may be applied to related rosaceous crops.

8.
Plant Cell Rep ; 38(5): 533-543, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30725169

RESUMO

KEY MESSAGE: The first report of the cloning and characterization of the flowering time-regulating genes GI and CO homologs from loquat. Flowering time is critical for successful reproduction in plants. In fruit trees, it can also influence the fruit yield and quality. In the previous work, we cloned the important florigen one EdFT and two EdFDs from wild loquat (Eriobotrya deflexa Nakai forma koshunensis); however, the upstream transcription factors are still unknown. The photoperiod pathway genes GIGANTEA (GI) and CONSTANS (CO) have been reported to mainly regulate FT expression in model plants. In this work, we first cloned photoperiod pathway orthologs EdGI and EdCO from E. deflexa Nakai f. koshunensis. Phylogenetic analysis showed they are highly conserved to those from Arabidopsis. They are mainly expressed in the leaves. The EdGI and EdCO were localized in the nucleus. Their expression showed in photoperiodic regulation, while the EdCO transcripts reached the peak at different periods from that of CO in Arabidopsis. Moreover, EdCO significantly activated the EdFT promoter activity. In the transgenic Arabidopsis, downstream-flowering genes like FT and AP1 were obviously upregulated, and consequently resulted in early-flowering phenotype compared to the wild type. These data revealed that the EdGI and EdCO may play a similar role as GI and CO in Arabidopsis, and regulate flower initiation in loquat.


Assuntos
Eriobotrya/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Eriobotrya/fisiologia , Flores/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Fotoperíodo , Filogenia
9.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905863

RESUMO

The age pathway is important for regulating flower bud initiation in flowering plants. The major regulators in this pathway are miR156 and SPL transcription factors. To date, SPL genes have been identified in many species of plants. Loquat, as a woody fruit tree of Rosaceae, is unique in flowering time as it blooms in winter. However, the study of its SPL homologous genes on the regulation mechanism of flowering time is still limited. In this study, four SPL homologs-EjSPL3, EjSPL4, EjSPL5, and EjSPL9-are cloned from loquat, and phylogenetic analysis showed that they share a high sequence similarity with the homologues from other plants, including a highly conserved SQUAMOSA promoter binding protein (SBP)-box domain. EjSPL3, EjSPL4, EjSPL5 are localized in the cytoplasm and nucleus, and EjSPL9 is localized only in the nucleus. EjSPL4, EjSPL5, and EjSPL9 can significantly activate the promoters of EjSOC1-1, EjLFY-1, and EjAP1-1; overexpression of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 in wild-type Arabidopsis thaliana can promote flowering obviously, and downstream flowering genes expression were upregulated. Our work indicated that the EjSPL3, EjSPL4, EjSPL5, and EjSPL9 transcription factors are speculated to likely participate in flower bud differentiation and other developmental processes in loquat. These findings are helpful to analyze the flowering regulation mechanism of loquat and provide reference for the study of the flowering mechanism of other woody fruit trees.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Eriobotrya/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Eriobotrya/genética , Eriobotrya/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Análise de Sequência , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...